BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 32461276)

  • 1. Rules of Expansion: an Updated Consensus Operator Site for the CopR-CopY Family of Bacterial Copper Exporter System Repressors.
    O'Brien H; Alvin JW; Menghani SV; Sanchez-Rosario Y; Van Doorslaer K; Johnson MDL
    mSphere; 2020 May; 5(3):. PubMed ID: 32461276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the CopR regulon of Lactococcus lactis IL1403.
    Magnani D; Barré O; Gerber SD; Solioz M
    J Bacteriol; 2008 Jan; 190(2):536-45. PubMed ID: 17993525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CopY-like copper inducible repressors are putative 'winged helix' proteins.
    Portmann R; Poulsen KR; Wimmer R; Solioz M
    Biometals; 2006 Feb; 19(1):61-70. PubMed ID: 16502332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The copper-responsive repressor CopR of Lactococcus lactis is a 'winged helix' protein.
    Cantini F; Banci L; Solioz M
    Biochem J; 2009 Jan; 417(2):493-9. PubMed ID: 18837698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal
    Neubert MJ; Dahlmann EA; Ambrose A; Johnson MDL
    mSphere; 2017; 2(5):. PubMed ID: 29062896
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae.
    Portmann R; Magnani D; Stoyanov JV; Schmechel A; Multhaup G; Solioz M
    J Biol Inorg Chem; 2004 Jun; 9(4):396-402. PubMed ID: 15057514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification and characterization of CopR, a transcriptional activator protein that binds to a conserved domain (cop box) in copper-inducible promoters of Pseudomonas syringae.
    Mills SD; Lim CK; Cooksey DA
    Mol Gen Genet; 1994 Aug; 244(4):341-51. PubMed ID: 8078459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cop-like operon: structure and organization in species of the Lactobacillale order.
    Reyes A; Leiva A; Cambiazo V; Méndez MA; González M
    Biol Res; 2006; 39(1):87-93. PubMed ID: 16629168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases.
    Strausak D; Solioz M
    J Biol Chem; 1997 Apr; 272(14):8932-6. PubMed ID: 9083014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cop operon is required for copper homeostasis and contributes to virulence in Streptococcus pneumoniae.
    Shafeeq S; Yesilkaya H; Kloosterman TG; Narayanan G; Wandel M; Andrew PW; Kuipers OP; Morrissey JA
    Mol Microbiol; 2011 Sep; 81(5):1255-70. PubMed ID: 21736642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons.
    Safo MK; Zhao Q; Ko TP; Musayev FN; Robinson H; Scarsdale N; Wang AH; Archer GL
    J Bacteriol; 2005 Mar; 187(5):1833-44. PubMed ID: 15716455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae.
    Mills SD; Jasalavich CA; Cooksey DA
    J Bacteriol; 1993 Mar; 175(6):1656-64. PubMed ID: 8449873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional repressor CopR: structure model-based localization of the deoxyribonucleic acid binding motif.
    Steinmetzer K; Hillisch A; Behlke J; Brantl S
    Proteins; 2000 Mar; 38(4):393-406. PubMed ID: 10707026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of arginine biosynthesis in the psychropiezophilic bacterium Moritella profunda: in vivo repressibility and in vitro repressor-operator contact probing.
    Xu Y; Sun Y; Huysveld N; Gigot D; Glansdorff N; Charlier D
    J Mol Biol; 2003 Feb; 326(2):353-69. PubMed ID: 12559906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional Repressor CopR: use of SELEX to study the copR operator indicates that evolution was directed at maximal binding affinity.
    Freede P; Brantl S
    J Bacteriol; 2004 Sep; 186(18):6254-64. PubMed ID: 15342596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper chaperone cycling and degradation in the regulation of the cop operon of Enterococcus hirae.
    Magnani D; Solioz M
    Biometals; 2005 Aug; 18(4):407-12. PubMed ID: 16158233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a copper-transport operon, copYAZ, from Streptococcus mutans.
    Vats N; Lee SF
    Microbiology (Reading); 2001 Mar; 147(Pt 3):653-662. PubMed ID: 11238972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription regulation in thermophilic bacteria: high resolution contact probing of Bacillus stearothermophilus and Thermotoga neapolitana arginine repressor-operator interactions.
    Song H; Wang H; Gigot D; Dimova D; Sakanyan V; Glansdorff N; Charlier D
    J Mol Biol; 2002 Jan; 315(3):255-74. PubMed ID: 11786010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the Streptococcus pneumoniae maltosaccharide regulator MalR, a member of the LacI-GalR family of repressors displaying distinctive genetic features.
    Puyet A; Ibáñez AM; Espinosa M
    J Biol Chem; 1993 Dec; 268(34):25402-8. PubMed ID: 8244973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor.
    Cobine P; Wickramasinghe WA; Harrison MD; Weber T; Solioz M; Dameron CT
    FEBS Lett; 1999 Feb; 445(1):27-30. PubMed ID: 10069368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.