These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 32461357)

  • 1. The thermo-wetting instability driving Leidenfrost film collapse.
    Zhao TY; Patankar NA
    Proc Natl Acad Sci U S A; 2020 Jun; 117(24):13321-13328. PubMed ID: 32461357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-speed X-ray imaging of the Leidenfrost collapse.
    Jones PR; Chuang CA; Sun T; Zhao TY; Fezzaa K; Takase JC; Singh D; Patankar NA
    Sci Rep; 2019 Feb; 9(1):1598. PubMed ID: 30733576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leidenfrost point reduction on micropatterned metallic surfaces.
    del Cerro DA; Marín AG; Römer GR; Pathiraj B; Lohse D; Huis in 't Veld AJ
    Langmuir; 2012 Oct; 28(42):15106-10. PubMed ID: 23020737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics of Leidenfrost droplets in one-component fluids.
    Xu X; Qian T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043013. PubMed ID: 23679519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smoothed particle hydrodynamics simulations of evaporation and explosive boiling of liquid drops in microgravity.
    Sigalotti LD; Troconis J; Sira E; Peña-Polo F; Klapp J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013021. PubMed ID: 26274283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rayleigh-Taylor instability of viscous fluids with phase change.
    Kim BJ; Kim KD
    Phys Rev E; 2016 Apr; 93():043123. PubMed ID: 27176406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directional Droplet Propulsion on Gradient Boron Nitride Nanosheet Grid Surface Lubricated with a Vapor Film below the Leidenfrost Temperature.
    Wang Y; Wang R; Zhou Y; Huang Z; Wang J; Jiang L
    ACS Nano; 2018 Dec; 12(12):11995-12003. PubMed ID: 30457835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic Leidenfrost Effect: Relevant Time and Length Scales.
    Shirota M; van Limbeek MA; Sun C; Prosperetti A; Lohse D
    Phys Rev Lett; 2016 Feb; 116(6):064501. PubMed ID: 26918994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical model of the Leidenfrost temperature.
    Gavrilyuk S; Gouin H
    Phys Rev E; 2022 Nov; 106(5-2):055102. PubMed ID: 36559441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat transfer enhancement accompanying Leidenfrost state suppression at ultrahigh temperatures.
    Shahriari A; Wurz J; Bahadur V
    Langmuir; 2014 Oct; 30(40):12074-81. PubMed ID: 25225852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Different Fluids on Rectified Motion of Leidenfrost Droplets on Micro/Sub-Micron Ratchets.
    Ok JT; Choi J; Brown E; Park S
    Microelectron Eng; 2016 Jun; 158():130-134. PubMed ID: 27721527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Film levitation and central jet of droplet impact on nanotube surface at superheated conditions.
    Zhou D; Zhang Y; Hou Y; Zhong X; Jin J; Sun L
    Phys Rev E; 2020 Oct; 102(4-1):043108. PubMed ID: 33212652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drop impact on superheated surfaces.
    Tran T; Staat HJ; Prosperetti A; Sun C; Lohse D
    Phys Rev Lett; 2012 Jan; 108(3):036101. PubMed ID: 22400761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring vapor film beneath a Leidenfrost drop.
    Li A; Li H; Lyu S; Zhao Z; Xue L; Li Z; Li K; Li M; Sun C; Song Y
    Nat Commun; 2023 May; 14(1):2646. PubMed ID: 37156802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Leidenfrost Self-Rewetting Drops.
    Ouenzerfi S; Harmand S; Schiffler J
    J Phys Chem B; 2018 May; 122(18):4922-4930. PubMed ID: 29672056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of Continuous Transport of the Droplet by the Contact-Boiling Regime.
    Wang S; Zhao X; Wu X; Zhang Q; Teng Y; Ahuja R; Zhang Y
    Langmuir; 2021 Jan; 37(1):553-560. PubMed ID: 33393313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustically-controlled Leidenfrost droplets.
    Ng BT; Hung YM; Tan MK
    J Colloid Interface Sci; 2016 Mar; 465():26-32. PubMed ID: 26641561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces.
    Vakarelski IU; Patankar NA; Marston JO; Chan DY; Thoroddsen ST
    Nature; 2012 Sep; 489(7415):274-7. PubMed ID: 22972299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.