These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 32461692)

  • 1. Hepatic NADH reductive stress underlies common variation in metabolic traits.
    Goodman RP; Markhard AL; Shah H; Sharma R; Skinner OS; Clish CB; Deik A; Patgiri A; Hsu YH; Masia R; Noh HL; Suk S; Goldberger O; Hirschhorn JN; Yellen G; Kim JK; Mootha VK
    Nature; 2020 Jul; 583(7814):122-126. PubMed ID: 32461692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio.
    Titov DV; Cracan V; Goodman RP; Peng J; Grabarek Z; Mootha VK
    Science; 2016 Apr; 352(6282):231-5. PubMed ID: 27124460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CAR T-Cells Depend on the Coupling of NADH Oxidation with ATP Production.
    Garcia-Canaveras JC; Heo D; Trefely S; Leferovich J; Xu C; Philipson BI; Ghassemi S; Milone MC; Moon EK; Snyder NW; June CH; Rabinowitz JD; O'Connor RS
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial ubiquinol oxidation is necessary for tumour growth.
    Martínez-Reyes I; Cardona LR; Kong H; Vasan K; McElroy GS; Werner M; Kihshen H; Reczek CR; Weinberg SE; Gao P; Steinert EM; Piseaux R; Budinger GRS; Chandel NS
    Nature; 2020 Sep; 585(7824):288-292. PubMed ID: 32641834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ChREBP is activated by reductive stress and mediates GCKR-associated metabolic traits.
    Singh C; Jin B; Shrestha N; Markhard AL; Panda A; Calvo SE; Deik A; Pan X; Zuckerman AL; Ben Saad A; Corey KE; Sjoquist J; Osganian S; AminiTabrizi R; Rhee EP; Shah H; Goldberger O; Mullen AC; Cracan V; Clish CB; Mootha VK; Goodman RP
    Cell Metab; 2024 Jan; 36(1):144-158.e7. PubMed ID: 38101397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cofactor engineering to regulate NAD
    Su L; Shen Y; Zhang W; Gao T; Shang Z; Wang M
    Microb Cell Fact; 2017 Oct; 16(1):182. PubMed ID: 29084539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced acetoin production by Serratia marcescens H32 with expression of a water-forming NADH oxidase.
    Sun JA; Zhang LY; Rao B; Shen YL; Wei DZ
    Bioresour Technol; 2012 Sep; 119():94-8. PubMed ID: 22728188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loss of NADH Oxidase Activity in Streptococcus mutans Leads to Rex-Mediated Overcompensation in NAD+ Regeneration by Lactate Dehydrogenase.
    Baker JL; Derr AM; Faustoferri RC; Quivey RG
    J Bacteriol; 2015 Dec; 197(23):3645-57. PubMed ID: 26350138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
    Vemuri GN; Eiteman MA; McEwen JE; Olsson L; Nielsen J
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2402-7. PubMed ID: 17287356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modelling of NADH oxidation catalyzed by new NADH oxidase from Lactobacillus brevis in continuously operated enzyme membrane reactor.
    Findrik Z; Vrsalović Presecki A; Vasić-Racki D
    J Biosci Bioeng; 2007 Oct; 104(4):275-80. PubMed ID: 18023799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal compartmentalization of hepatic NADH and NADPH metabolism.
    Goodman RP; Calvo SE; Mootha VK
    J Biol Chem; 2018 May; 293(20):7508-7516. PubMed ID: 29514978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded tool for manipulation of NADP
    Cracan V; Titov DV; Shen H; Grabarek Z; Mootha VK
    Nat Chem Biol; 2017 Oct; 13(10):1088-1095. PubMed ID: 28805804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis.
    Ge X; Yu Y; Zhang M; Chen L; Chen W; Elrami F; Kong F; Kitten T; Xu P
    Infect Immun; 2016 May; 84(5):1470-1477. PubMed ID: 26930704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Live cell imaging of cytosolic NADH/NAD
    Masia R; McCarty WJ; Lahmann C; Luther J; Chung RT; Yarmush ML; Yellen G
    Am J Physiol Gastrointest Liver Physiol; 2018 Jan; 314(1):G97-G108. PubMed ID: 29025729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of purine biosynthesis as an NADH-sensing pathway to mediate energy stress.
    Yang R; Yang C; Ma L; Zhao Y; Guo Z; Niu J; Chu Q; Ma Y; Li B
    Nat Commun; 2022 Nov; 13(1):7031. PubMed ID: 36396642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystallization and preliminary crystallographic analysis of a flavoprotein NADH oxidase from Lactobacillus brevis.
    Kuzu M; Niefind K; Hummel W; Schomburg D
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 May; 61(Pt 5):528-30. PubMed ID: 16511087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cullin 3 RING E3 ligase inactivation causes NRF2-dependent NADH reductive stress, hepatic lipodystrophy, and systemic insulin resistance.
    Gu L; Du Y; Chen J; Hasan MN; Clayton YD; Matye DJ; Friedman JE; Li T
    Proc Natl Acad Sci U S A; 2024 Apr; 121(17):e2320934121. PubMed ID: 38630726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Streptococcus mutans NADH oxidase lies at the intersection of overlapping regulons controlled by oxygen and NAD+ levels.
    Baker JL; Derr AM; Karuppaiah K; MacGilvray ME; Kajfasz JK; Faustoferri RC; Rivera-Ramos I; Bitoun JP; Lemos JA; Wen ZT; Quivey RG
    J Bacteriol; 2014 Jun; 196(12):2166-77. PubMed ID: 24682329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase.
    Lopez de Felipe F; Kleerebezem M; de Vos WM; Hugenholtz J
    J Bacteriol; 1998 Aug; 180(15):3804-8. PubMed ID: 9683475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.