These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 32461872)

  • 1. Stochastic excitation for high-resolution atomic force acoustic microscopy imaging: a system theory approach.
    Cruz Valeriano E; Gervacio Arciniega JJ; Enriquez Flores CI; Meraz Dávila S; Moreno Palmerin J; Hernández Landaverde MA; Chipatecua Godoy YL; Gutiérrez Peralta AM; Ramírez Bon R; Yañez Limón JM
    Beilstein J Nanotechnol; 2020; 11():703-716. PubMed ID: 32461872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast frequency sweeping in resonance-tracking SPM for high-resolution AFAM and PFM imaging.
    Enriquez-Flores CI; Gervacio-Arciniega JJ; Cruz-Valeriano E; de Urquijo-Ventura P; Gutierrez-Salazar BJ; Espinoza-Beltran FJ
    Nanotechnology; 2012 Dec; 23(49):495705. PubMed ID: 23149480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical characterization of nanoporous materials by use of atomic force acoustic microscopy methods.
    Kopycinska-Müller M; Yeap KB; Mahajan S; Köhler B; Kuzeyeva N; Müller T; Zschech E; Wolter KJ
    Nanotechnology; 2013 Sep; 24(35):355703. PubMed ID: 23938222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical characterization of porous nano-thin films by use of atomic force acoustic microscopy.
    Kopycinska-Müller M; Clausner A; Yeap KB; Köhler B; Kuzeyeva N; Mahajan S; Savage T; Zschech E; Wolter KJ
    Ultramicroscopy; 2016 Mar; 162():82-90. PubMed ID: 26799327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual resonance excitation system for the contact mode of atomic force microscopy.
    Kopycinska-Müller M; Striegler A; Schlegel R; Kuzeyeva N; Köhler B; Wolter KJ
    Rev Sci Instrum; 2012 Apr; 83(4):043703. PubMed ID: 22559535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contact mechanics and tip shape in AFM-based nanomechanical measurements.
    Kopycinska-Müller M; Geiss RH; Hurley DC
    Ultramicroscopy; 2006 Apr; 106(6):466-74. PubMed ID: 16448755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive Subcellular Imaging Using Atomic Force Acoustic Microscopy (AFAM).
    Li X; Lu A; Deng W; Su L; Wang J; Ding M
    Cells; 2019 Apr; 8(4):. PubMed ID: 30959776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping of elasticity and damping in an α + β titanium alloy through atomic force acoustic microscopy.
    Phani MK; Kumar A; Jayakumar T; Arnold W; Samwer K
    Beilstein J Nanotechnol; 2015; 6():767-76. PubMed ID: 25977847
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the contact resonance frequencies in atomic force microscopy as a method for surface characterisation (invited).
    Rabe U; Kopycinska M; Hirsekorn S; Arnold W
    Ultrasonics; 2002 May; 40(1-8):49-54. PubMed ID: 12159988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing the free and surface-coupled vibrations of heated-tip atomic force microscope cantilevers.
    Killgore JP; Tung RC; Hurley DC
    Nanotechnology; 2014 Aug; 25(34):345701. PubMed ID: 25098183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cantilever signature of tip detachment during contact resonance AFM.
    Kalafut D; Wagner R; Cadena MJ; Bajaj A; Raman A
    Beilstein J Nanotechnol; 2021; 12():1286-1296. PubMed ID: 34900510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic resolution force imaging through the static deflection of the cantilever in simultaneous Scanning Tunneling/Atomic Force Microscopy.
    Özgür Özer H
    Ultramicroscopy; 2019 Jan; 196():54-57. PubMed ID: 30278318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indentation modulus and hardness of viscoelastic thin films by atomic force microscopy: A case study.
    Passeri D; Bettucci A; Biagioni A; Rossi M; Alippi A; Tamburri E; Lucci M; Davoli I; Berezina S
    Ultramicroscopy; 2009 Nov; 109(12):1417-27. PubMed ID: 19674843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A macroscopic non-destructive testing system based on the cantilever-sample contact resonance.
    Fu J; Lin L; Zhou X; Li Y; Li F
    Rev Sci Instrum; 2012 Dec; 83(12):123707. PubMed ID: 23277996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic force acoustic microscopy: Influence of the lateral contact stiffness on the elastic measurements.
    Flores-Ruiz FJ; Espinoza-Beltrán FJ; Diliegros-Godines CJ; Siqueiros JM; Herrera-Gómez A
    Ultrasonics; 2016 Sep; 71():271-277. PubMed ID: 27428309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustics and atomic force microscopy for the mechanical characterization of thin films.
    Passeri D; Bettucci A; Rossi M
    Anal Bioanal Chem; 2010 Apr; 396(8):2769-83. PubMed ID: 20069282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative mapping of high modulus materials at the nanoscale: comparative study between atomic force microscopy and nanoindentation.
    Coq Germanicus R; Mercier D; Agrebi F; FÈbvre M; Mariolle D; Descamps P; LeclÈre P
    J Microsc; 2020 Jun; ():. PubMed ID: 32515496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the effect of local sample slope during modulus measurements by contact-resonance atomic force microscopy.
    Heinze K; Arnould O; Delenne JY; Lullien-Pellerin V; Ramonda M; George M
    Ultramicroscopy; 2018 Nov; 194():78-88. PubMed ID: 30092392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.