These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 3246217)

  • 1. Development and characterization of commissural interneurones in the spinal cord of Xenopus laevis embryos revealed by antibodies to glycine.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    Development; 1988 Jul; 103(3):447-61. PubMed ID: 3246217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord neuron classes in embryos of the smooth newt Triturus vulgaris: a horseradish peroxidase and immunocytochemical study.
    Harper CE; Roberts A
    Philos Trans R Soc Lond B Biol Sci; 1993 Apr; 340(1291):141-60. PubMed ID: 8099742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory neurones of a motor pattern generator in Xenopus revealed by antibodies to glycine.
    Dale N; Ottersen OP; Roberts A; Storm-Mathisen J
    Nature; 1986 Nov 20-26; 324(6094):255-7. PubMed ID: 3785396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reciprocal inhibitory interneurones in the Xenopus embryo spinal cord.
    Dale N
    J Physiol; 1985 Jun; 363():61-70. PubMed ID: 4020706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles.
    Soffe SR; Zhao FY; Roberts A
    Eur J Neurosci; 2001 Feb; 13(3):617-27. PubMed ID: 11168570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The early development of neurons with GABA immunoreactivity in the CNS of Xenopus laevis embryos.
    Roberts A; Dale N; Ottersen OP; Storm-Mathisen J
    J Comp Neurol; 1987 Jul; 261(3):435-49. PubMed ID: 3611420
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuroanatomical and functional analysis of neural tube formation in notochordless Xenopus embryos; laterality of the ventral spinal cord is lost.
    Clarke JD; Holder N; Soffe SR; Storm-Mathisen J
    Development; 1991 Jun; 112(2):499-516. PubMed ID: 1794319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurotransmitter systems of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Wéber I; Veress G; Szucs P; Antal M; Birinyi A
    Brain Res; 2007 Oct; 1178():65-72. PubMed ID: 17920568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activity of commissural interneurons in spinal cord of Xenopus embryos.
    Soffe SR; Clarke JD; Roberts A
    J Neurophysiol; 1984 Jun; 51(6):1257-67. PubMed ID: 6737030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ventral midline cells are required for the local control of commissural axon guidance in the mouse spinal cord.
    Matise MP; Lustig M; Sakurai T; Grumet M; Joyner AL
    Development; 1999 Aug; 126(16):3649-59. PubMed ID: 10409510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord.
    Bras H; Cavallari P; Jankowska E; Kubin L
    J Comp Neurol; 1989 Dec; 290(1):1-15. PubMed ID: 2592606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network.
    Li WC; Cooke T; Sautois B; Soffe SR; Borisyuk R; Roberts A
    Neural Dev; 2007 Sep; 2():17. PubMed ID: 17845723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and Function of Spinal Excitatory Interneurons with Commissural Projections in Xenopus laevis embryos.
    Roberts A; Sillar KT
    Eur J Neurosci; 1990; 2(12):1051-1062. PubMed ID: 12106066
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of early developing axon projections from spinal interneurons in the chick embryo with a neuron specific beta-tubulin antibody: evidence for a new 'pioneer' pathway in the spinal cord.
    Yaginuma H; Shiga T; Homma S; Ishihara R; Oppenheim RW
    Development; 1990 Apr; 108(4):705-16. PubMed ID: 2387240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ipsi- and contralateral commissural growth cones react differently to the cellular environment of the ventral zebrafish spinal cord.
    Bernhardt RR
    J Comp Neurol; 1994 Dec; 350(1):122-32. PubMed ID: 7860796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathfinding by growth cones of commissural interneurons in the chick embryo spinal cord: a light and electron microscopic study.
    Yaginuma H; Homma S; Künzi R; Oppenheim RW
    J Comp Neurol; 1991 Feb; 304(1):78-102. PubMed ID: 2016414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptic targets of commissural interneurons in the lumbar spinal cord of neonatal rats.
    Birinyi A; Viszokay K; Wéber I; Kiehn O; Antal M
    J Comp Neurol; 2003 Jul; 461(4):429-40. PubMed ID: 12746860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles.
    Li WC; Perrins R; Soffe SR; Yoshida M; Walford A; Roberts A
    J Comp Neurol; 2001 Dec; 441(3):248-65. PubMed ID: 11745648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The axonal projections of the Hofmann nuclei in the spinal cord of the late stage chicken embryo.
    Eide AL
    Anat Embryol (Berl); 1996 Jun; 193(6):543-57. PubMed ID: 8737810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling.
    Yoshida M; Roberts A; Soffe SR
    J Comp Neurol; 1998 Nov; 400(4):504-18. PubMed ID: 9786411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.