BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 32462408)

  • 1. Spring wildflower phenology and pollinator activity respond similarly to climatic variation in an eastern hardwood forest.
    Sevenello M; Sargent RD; Forrest JRK
    Oecologia; 2020 Jun; 193(2):475-488. PubMed ID: 32462408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bee phenology is predicted by climatic variation and functional traits.
    Stemkovski M; Pearse WD; Griffin SR; Pardee GL; Gibbs J; Griswold T; Neff JL; Oram R; Rightmyer MG; Sheffield CS; Wright K; Inouye BD; Inouye DW; Irwin RE
    Ecol Lett; 2020 Nov; 23(11):1589-1598. PubMed ID: 32812695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specialist bee and its host plants experience phenological shifts at different rates in response to climate change.
    Weaver SA; Mallinger RE
    Ecology; 2022 May; 103(5):e3658. PubMed ID: 35129842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Climate drives phenological reassembly of a mountain wildflower meadow community.
    Theobald EJ; Breckheimer I; HilleRisLambers J
    Ecology; 2017 Nov; 98(11):2799-2812. PubMed ID: 29023677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flowering phenology in subalpine meadows: does climate variation influence community co-flowering patterns?
    Forrest J; Inouye DW; Thomson JD
    Ecology; 2010 Feb; 91(2):431-40. PubMed ID: 20392008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecological traits explain long-term phenological trends in solitary bees.
    Dorian NN; McCarthy MW; Crone EE
    J Anim Ecol; 2023 Feb; 92(2):285-296. PubMed ID: 35839142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The potential for phenological mismatch between a perennial herb and its ground-nesting bee pollinator.
    Olliff-Yang RL; Mesler MR
    AoB Plants; 2018 Aug; 10(4):ply040. PubMed ID: 30046417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flowering time advances since the 1970s in a sagebrush steppe community: Implications for management and restoration.
    Bloom TDS; O'Leary DS; Riginos C
    Ecol Appl; 2022 Sep; 32(6):e2583. PubMed ID: 35333428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linkages between phenology, pollination, photosynthesis, and reproduction in deciduous forest understory plants.
    Kudo G; Ida TY; Tani T
    Ecology; 2008 Feb; 89(2):321-31. PubMed ID: 18409422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ecological implications of intra- and inter-species variation in phenological sensitivity.
    Xie Y; Thammavong HT; Park DS
    New Phytol; 2022 Oct; 236(2):760-773. PubMed ID: 35801834
    [TBL] [Abstract][Full Text] [Related]  

  • 14. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction.
    Kudo G; Cooper EJ
    Proc Biol Sci; 2019 Jun; 286(1904):20190573. PubMed ID: 31185863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?
    Iler AM; Høye TT; Inouye DW; Schmidt NM
    Philos Trans R Soc Lond B Biol Sci; 2013 Aug; 368(1624):20120489. PubMed ID: 23836793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early snowmelt and warmer, drier summers shrink postflowering transition times in subalpine wildflowers.
    Sethi ML; Theobald EJ; Breckheimer I; Hille Ris Lambers J
    Ecology; 2020 Dec; 101(12):e03171. PubMed ID: 32852790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers.
    Inouye DW
    Ecology; 2008 Feb; 89(2):353-62. PubMed ID: 18409425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of temporal synchrony between syrphid flies and floral resources despite differential phenological responses to climate.
    Iler AM; Inouye DW; Høye TT; Miller-Rushing AJ; Burkle LA; Johnston EB
    Glob Chang Biol; 2013 Aug; 19(8):2348-59. PubMed ID: 23640772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.