These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 32462594)
1. Proteome Analysis of 14-3-3 Targets in Tomato Fruit Tissues. Luo Y; Lu Y; Yamaguchi J; Sato T Methods Mol Biol; 2020; 2139():289-296. PubMed ID: 32462594 [TBL] [Abstract][Full Text] [Related]
2. An extensive proteome map of tomato (Solanum lycopersicum) fruit pericarp. Xu J; Pascual L; Aurand R; Bouchet JP; Valot B; Zivy M; Causse M; Faurobert M Proteomics; 2013 Oct; 13(20):3059-63. PubMed ID: 23929585 [TBL] [Abstract][Full Text] [Related]
3. In-depth characterization of the tomato fruit pericarp proteome. Mata CI; Fabre B; Hertog ML; Parsons HT; Deery MJ; Lilley KS; Nicolaï BM Proteomics; 2017 Jan; 17(1-2):. PubMed ID: 27957804 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of tomato (Solanum lycopersicum) secretome. Konozy EH; Rogniaux H; Causse M; Faurobert M J Plant Res; 2013 Mar; 126(2):251-66. PubMed ID: 22892874 [TBL] [Abstract][Full Text] [Related]
5. Label-free deep shotgun proteomics reveals protein dynamics during tomato fruit tissues development. Szymanski J; Levin Y; Savidor A; Breitel D; Chappell-Maor L; Heinig U; Töpfer N; Aharoni A Plant J; 2017 Apr; 90(2):396-417. PubMed ID: 28112434 [TBL] [Abstract][Full Text] [Related]
6. Proteome changes in tomato fruits prior to visible symptoms of chilling injury are linked to defensive mechanisms, uncoupling of photosynthetic processes and protein degradation machinery. Sanchez-Bel P; Egea I; Sanchez-Ballesta MT; Sevillano L; Del Carmen Bolarin M; Flores FB Plant Cell Physiol; 2012 Feb; 53(2):470-84. PubMed ID: 22227396 [TBL] [Abstract][Full Text] [Related]
7. Characterization of ubiquitin ligase SlATL31 and proteomic analysis of 14-3-3 targets in tomato fruit tissue (Solanum lycopersicum L.). Lu Y; Yasuda S; Li X; Fukao Y; Tohge T; Fernie AR; Matsukura C; Ezura H; Sato T; Yamaguchi J J Proteomics; 2016 Jun; 143():254-264. PubMed ID: 27113132 [TBL] [Abstract][Full Text] [Related]
8. Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato ( Xie Q; Tian Y; Hu Z; Zhang L; Tang B; Wang Y; Li J; Chen G Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769214 [TBL] [Abstract][Full Text] [Related]
9. Major proteome variations associated with cherry tomato pericarp development and ripening. Faurobert M; Mihr C; Bertin N; Pawlowski T; Negroni L; Sommerer N; Causse M Plant Physiol; 2007 Mar; 143(3):1327-46. PubMed ID: 17208958 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening. Qin G; Wang Y; Cao B; Wang W; Tian S Plant J; 2012 Apr; 70(2):243-55. PubMed ID: 22098335 [TBL] [Abstract][Full Text] [Related]
11. Spatially Resolved Proteome Profiling of <200 Cells from Tomato Fruit Pericarp by Integrating Laser-Capture Microdissection with Nanodroplet Sample Preparation. Liang Y; Zhu Y; Dou M; Xu K; Chu RK; Chrisler WB; Zhao R; Hixson KK; Kelly RT Anal Chem; 2018 Sep; 90(18):11106-11114. PubMed ID: 30118597 [TBL] [Abstract][Full Text] [Related]
12. Effect of salinity and calcium on tomato fruit proteome. Manaa A; Faurobert M; Valot B; Bouchet JP; Grasselly D; Causse M; Ahmed HB OMICS; 2013 Jun; 17(6):338-52. PubMed ID: 23692365 [TBL] [Abstract][Full Text] [Related]
13. Salt-stress induced physiological and proteomic changes in tomato (Solanum lycopersicum) seedlings. Manaa A; Ahmed HB; Smiti S; Faurobert M OMICS; 2011 Nov; 15(11):801-9. PubMed ID: 22044338 [TBL] [Abstract][Full Text] [Related]
14. Proteomic analysis of ripening tomato fruit infected by Botrytis cinerea. Shah P; Powell AL; Orlando R; Bergmann C; Gutierrez-Sanchez G J Proteome Res; 2012 Apr; 11(4):2178-92. PubMed ID: 22364583 [TBL] [Abstract][Full Text] [Related]
15. Towards characterization of the glycoproteome of tomato (Solanum lycopersicum) fruit using Concanavalin A lectin affinity chromatography and LC-MALDI-MS/MS analysis. Catalá C; Howe KJ; Hucko S; Rose JK; Thannhauser TW Proteomics; 2011 Apr; 11(8):1530-44. PubMed ID: 21381198 [TBL] [Abstract][Full Text] [Related]
16. Comparative N-glycoproteome analysis provides novel insights into the regulation mechanism in tomato (solanum lycopersicum L.) During fruit ripening process. Zhang X; Tang H; Du H; Liu Z; Bao Z; Shi Q Plant Sci; 2020 Apr; 293():110413. PubMed ID: 32081262 [TBL] [Abstract][Full Text] [Related]
17. Changes in the microsomal proteome of tomato fruit during ripening. Pontiggia D; Spinelli F; Fabbri C; Licursi V; Negri R; De Lorenzo G; Mattei B Sci Rep; 2019 Oct; 9(1):14350. PubMed ID: 31586085 [TBL] [Abstract][Full Text] [Related]
18. iTRAQ protein profile analysis of tomato green-ripe mutant reveals new aspects critical for fruit ripening. Pan X; Zhu B; Zhu H; Chen Y; Tian H; Luo Y; Fu D J Proteome Res; 2014 Apr; 13(4):1979-93. PubMed ID: 24588624 [TBL] [Abstract][Full Text] [Related]
19. Effects of manganese toxicity on the protein profile of tomato (Solanum lycopersicum) roots as revealed by two complementary proteomic approaches, two-dimensional electrophoresis and shotgun analysis. Ceballos-Laita L; Gutierrez-Carbonell E; Imai H; Abadía A; Uemura M; Abadía J; López-Millán AF J Proteomics; 2018 Aug; 185():51-63. PubMed ID: 29953959 [TBL] [Abstract][Full Text] [Related]