BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32462729)

  • 1. Amphicarpic plants: definition, ecology, geographic distribution, systematics, life history, evolution and use in agriculture.
    Zhang K; Baskin JM; Baskin CC; Cheplick GP; Yang X; Huang Z
    Biol Rev Camb Philos Soc; 2020 Oct; 95(5):1442-1466. PubMed ID: 32462729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lack of divergence in seed ecology of two Amphicarpaea (Fabaceae) species disjunct between eastern Asia and eastern North America.
    Zhang K; Baskin JM; Baskin CC; Yang X; Huang Z
    Am J Bot; 2015 Jun; 102(6):860-9. PubMed ID: 26101412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into amphicarpy from the compact genome of the legume Amphicarpaea edgeworthii.
    Liu Y; Zhang X; Han K; Li R; Xu G; Han Y; Cui F; Fan S; Seim I; Fan G; Li G; Wan S
    Plant Biotechnol J; 2021 May; 19(5):952-965. PubMed ID: 33236503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Consequences of a mixed reproductive system in the hog peanut, Amphicarpaea bracteata, (Fabaceae).
    Joseph Trapp E; Hendrix SD
    Oecologia; 1988 Mar; 75(2):285-290. PubMed ID: 28310848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of seed morph and light level on growth and reproduction of the amphicarpic plant Amphicarpaea edgeworthii (Fabaceae).
    Zhang K; Baskin JM; Baskin CC; Yang X; Huang Z
    Sci Rep; 2017 Jan; 7():39886. PubMed ID: 28071671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ecology of amphicarpic plants.
    Cheplick GP
    Trends Ecol Evol; 1987 Apr; 2(4):97-101. PubMed ID: 21227828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphicarpum purshii and the "pessimistic strategy" in amphicarpic annuals with subterranean fruit.
    Cheplick GP; Quinn JA
    Oecologia; 1982 Jan; 52(3):327-332. PubMed ID: 28310391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding how an amphicarpic species with a mixed mating system responds to fire: a population genetic approach.
    Meyer EM; Swift JF; Bassüner B; Smith SA; Menges ES; Oberle B; Edwards CE
    AoB Plants; 2021 Dec; 13(6):plab067. PubMed ID: 34858568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The shift in aerial/subterranean fruit ratio in Amphicarpum purshii: causes and significance.
    Cheplick GP; Quinn JA
    Oecologia; 1983 Mar; 57(3):374-379. PubMed ID: 28309366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Germination, reproduction and interference in the amphicarpic annual Emex spinosa (L.) Campd.
    Weiss PW
    Oecologia; 1980 May; 45(2):244-251. PubMed ID: 28309535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biology of myco-heterotrophic ('saprophytic') plants.
    Leake JR
    New Phytol; 1994 Jun; 127(2):171-216. PubMed ID: 33874520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproductive versatility in legumes: the case of amphicarpy in Trifolium polymorphum.
    Speroni G; Izaguirre P; Bernardello G; Franco J
    Plant Biol (Stuttg); 2014 May; 16(3):690-6. PubMed ID: 24138122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of seed depth, litter, and fire in the seedling establishment of amphicarpic peanutgrass (Amphicarpum purshii).
    Cheplick GP; Quinn JA
    Oecologia; 1987 Sep; 73(3):459-464. PubMed ID: 28311530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms.
    Gianella M; Bradford KJ; Guzzon F
    Plant Reprod; 2021 Mar; 34(1):21-36. PubMed ID: 33449209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seed dispersal anachronisms: rethinking the fruits extinct megafauna ate.
    Guimarães PR; Galetti M; Jordano P
    PLoS One; 2008 Mar; 3(3):e1745. PubMed ID: 18320062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between seed dormancy-release mechanism, environment and seed bank strategy for a widely distributed perennial legume, Parkinsonia aculeata (Caesalpinaceae).
    Van Klinken RD; Lukitsch B; Cook C
    Ann Bot; 2008 Aug; 102(2):255-64. PubMed ID: 18558626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seed size, number and strategies in annual plants: a comparative functional analysis and synthesis.
    Hodgson JG; Montserrat Marti G; Šerá B; Jones G; Bogaard A; Charles M; Font X; Ater M; Taleb A; Santini BA; Hmimsa Y; Palmer C; Wilson PJ; Band SR; Styring A; Diffey C; Green L; Nitsch E; Stroud E; Warham G
    Ann Bot; 2020 Nov; 126(7):1109-1128. PubMed ID: 32812638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global biogeography of seed dormancy is determined by seasonality and seed size: a case study in the legumes.
    Rubio de Casas R; Willis CG; Pearse WD; Baskin CC; Baskin JM; Cavender-Bares J
    New Phytol; 2017 Jun; 214(4):1527-1536. PubMed ID: 28262955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Timing of seed dispersal and seed dormancy in Brazilian savanna: two solutions to face seasonality.
    Escobar DFE; Silveira FAO; Morellato LPC
    Ann Bot; 2018 May; 121(6):1197-1209. PubMed ID: 29425261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Offspring polymorphism and bet hedging: a large-scale, phylogenetic analysis.
    Scholl JP; Calle L; Miller N; Venable DL
    Ecol Lett; 2020 Aug; 23(8):1223-1231. PubMed ID: 32406146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.