These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32462906)

  • 1. A Simple Calibration Method of Anti-Stokes-Stokes Raman Intensity Ratios Using the Water Spectrum for Intracellular Temperature Measurements.
    Yoshikawa Y; Shigeto S
    Appl Spectrosc; 2020 Oct; 74(10):1295-1296. PubMed ID: 32462906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A technique for contactless measurement of water temperature using Stokes and anti-Stokes comparative Raman spectroscopy.
    Nikitin SP; Manka C; Grun J; Bowles J
    Rev Sci Instrum; 2012 Mar; 83(3):033105. PubMed ID: 22462904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a rotational coherent anti-Stokes Raman spectroscopy model for carbon dioxide using high-resolution detection in the temperature range 294-1143 K.
    Vestin F; Nilsson K; Bengtsson PE
    Appl Opt; 2008 Apr; 47(11):1893-901. PubMed ID: 18404188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contactless Temperature Sensing at the Microscale Based on Titanium Dioxide Raman Thermometry.
    Zani V; Pedron D; Pilot R; Signorini R
    Biosensors (Basel); 2021 Apr; 11(4):. PubMed ID: 33918227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pure rotational coherent anti-Stokes Raman spectroscopy in mixtures of CO and N2.
    Afzelius M; Brackmann C; Vestin F; Bengtsson PE
    Appl Opt; 2004 Dec; 43(36):6664-72. PubMed ID: 15646786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-pulse broadband rotational coherent anti-Stokes Raman-scattering thermometry of cold N2 gas.
    Murphy DV; Chang RK
    Opt Lett; 1981 May; 6(5):233-5. PubMed ID: 19701387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence intensity calibration using the Raman scatter peak of water.
    Lawaetz AJ; Stedmon CA
    Appl Spectrosc; 2009 Aug; 63(8):936-40. PubMed ID: 19678992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous anti-Stokes Raman probe for gas temperature measurements in industrial furnaces.
    Zikratov G; Yueh FY; Singh JP; Norton OP; Kumar RA; Cook RL
    Appl Opt; 1999 Mar; 38(9):1467-75. PubMed ID: 18305768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pure-rotational H
    Courtney TL; Bohlin A; Patterson BD; Kliewer CJ
    J Chem Phys; 2017 Jun; 146(22):224202. PubMed ID: 29166068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating Spatially Offset Low-Frequency Anti-Stokes Raman Spectroscopy (SOLFARS) for Detecting Subsurface Composition below an Emissive Layer: A Proof of Principle Study Using a Model Bilayer System.
    Be Rziņš KR; Mapley JI; Gordon KC; Fraser-Miller SJ
    Mol Pharm; 2022 Nov; 19(11):4311-4319. PubMed ID: 36170046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bandwidth optimization of femtosecond pure-rotational coherent anti-Stokes Raman scattering by pump/Stokes spectral focusing.
    Kearney SP
    Appl Opt; 2014 Oct; 53(28):6579-85. PubMed ID: 25322247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow frequency Stokes and anti-Stokes Raman spectroscopy of single living cells and microparticles using a hot rubidium vapor filter.
    Lin J; Li YQ
    Opt Lett; 2014 Jan; 39(1):108-10. PubMed ID: 24365834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-Free Imaging of Intracellular Temperature by Using the O-H Stretching Raman Band of Water.
    Sugimura T; Kajimoto S; Nakabayashi T
    Angew Chem Int Ed Engl; 2020 May; 59(20):7755-7760. PubMed ID: 32048796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-shot gas-phase thermometry by time-to-frequency mapping of coherence dephasing.
    Yue O; Bremer MT; Pestov D; Gord JR; Roy S; Dantus M
    J Phys Chem A; 2012 Aug; 116(31):8138-41. PubMed ID: 22747235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering for high-speed gas-phase thermometry.
    Miller JD; Slipchenko MN; Meyer TR; Stauffer HU; Gord JR
    Opt Lett; 2010 Jul; 35(14):2430-2. PubMed ID: 20634853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved multiple-pass Raman spectrometer.
    KC U; Silver JA; Hovde DC; Varghese PL
    Appl Opt; 2011 Aug; 50(24):4805-16. PubMed ID: 21857704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatially multiplexed femtosecond/picosecond coherent anti-Stokes Raman scattering for multipoint array measurements.
    Braun EL; Slipchenko MN; Roy S; Meyer TR
    Opt Lett; 2022 Oct; 47(20):5280-5283. PubMed ID: 36240342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Femtosecond stimulated Raman scattering picosecond molecular thermometry in condensed phases.
    Dang NC; Bolme CA; Moore DS; McGrane SD
    Phys Rev Lett; 2011 Jul; 107(4):043001. PubMed ID: 21866997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Label free noninvasive spatially resolved NaCl concentration measurements using Coherent Anti-Stokes Raman Scattering microscopy applied to butter.
    Jensen BB; Glover ZJ; Pedersen SMM; Andersen U; Duelund L; Brewer JR
    Food Chem; 2019 Nov; 297():124881. PubMed ID: 31253314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rovibrational hybrid fs/ps CARS using a volume Bragg grating for N₂ thermometry.
    Scherman M; Nafa M; Schmid T; Godard A; Bresson A; Attal-Tretout B; Joubert P
    Opt Lett; 2016 Feb; 41(3):488-91. PubMed ID: 26907404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.