These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32463006)

  • 1. Structure-based Design on Anticancer Drug Discovery.
    Zhong HA
    Curr Top Med Chem; 2020; 20(10):813-814. PubMed ID: 32463006
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeting cancer metabolism to develop human lactate dehydrogenase (hLDH)5 inhibitors.
    Zhang SL; He Y; Tam KY
    Drug Discov Today; 2018 Jul; 23(7):1407-1415. PubMed ID: 29750903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Editorial; Natural Product Inhibitors of Enzymatic Targets in Anticancer Drug Discovery - Part II.
    Scotti L; Scotti MT
    Curr Protein Pept Sci; 2018 Feb; 19(4):342. PubMed ID: 29493446
    [No Abstract]   [Full Text] [Related]  

  • 4. Discovery of novel human inosine 5'-monophosphate dehydrogenase 2 (hIMPDH2) inhibitors as potential anticancer agents.
    Shah CP; Kharkar PS
    Eur J Med Chem; 2018 Oct; 158():286-301. PubMed ID: 30223117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antibody-Drug Conjugates.
    Kulkarni AA; Gukasyan HJ
    Pharm Res; 2015 Nov; 32(11):3451-2. PubMed ID: 26275530
    [No Abstract]   [Full Text] [Related]  

  • 6. Advancing the kinase field: new targets and second generation inhibitors.
    Laufer S; Bajorath J
    J Med Chem; 2015 Jan; 58(1):1. PubMed ID: 25490234
    [No Abstract]   [Full Text] [Related]  

  • 7. Targeting Wnt-driven cancers: Discovery of novel tankyrase inhibitors.
    Ferri M; Liscio P; Carotti A; Asciutti S; Sardella R; Macchiarulo A; Camaioni E
    Eur J Med Chem; 2017 Dec; 142():506-522. PubMed ID: 29107427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Targets of Active Anticancer Compounds Derived from Marine Sources.
    Song X; Xiong Y; Qi X; Tang W; Dai J; Gu Q; Li J
    Mar Drugs; 2018 May; 16(5):. PubMed ID: 29786660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. When will small molecule lactate dehydrogenase inhibitors realize their potential in the cancer clinic?
    Rani R; Kumar V
    Future Med Chem; 2017 Jul; 9(11):1113-1115. PubMed ID: 28722474
    [No Abstract]   [Full Text] [Related]  

  • 10. Glycolysis Inhibitors for Anticancer Therapy: A Review of Recent Patents.
    Sheng H; Tang W
    Recent Pat Anticancer Drug Discov; 2016; 11(3):297-308. PubMed ID: 27087655
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discovery of novel NAMPT inhibitors based on pharmacophore modeling and virtual screening techniques.
    Yi Q; Zhou L; Shao X; Wang T; Bao G; Shi H; Zhou S; Li X; Tian Y
    Comb Chem High Throughput Screen; 2014; 17(10):868-78. PubMed ID: 25413783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Editorial: Ubiquitin E3 Ligases as Molecular Targets or Tools for Advanced Cancer Therapy.
    Kitagawa M
    Curr Cancer Drug Targets; 2016; 16(2):100. PubMed ID: 26791134
    [No Abstract]   [Full Text] [Related]  

  • 13. The druggability of intracellular nucleotide-degrading enzymes.
    Rampazzo C; Tozzi MG; Dumontet C; Jordheim LP
    Cancer Chemother Pharmacol; 2016 May; 77(5):883-93. PubMed ID: 26614508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein phosphatase 2A as a potential target for anticancer therapy.
    Kalev P; Sablina AA
    Anticancer Agents Med Chem; 2011 Jan; 11(1):38-46. PubMed ID: 21288198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, synthesis, in silico and in vitro evaluation of thiophene derivatives: A potent tyrosine phosphatase 1B inhibitor and anticancer activity.
    Gulipalli KC; Bodige S; Ravula P; Endoori S; Vanaja GR; Suresh Babu G; Narendra Sharath Chandra JN; Seelam N
    Bioorg Med Chem Lett; 2017 Aug; 27(15):3558-3564. PubMed ID: 28579122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of protein N-myristoylation: a therapeutic protocol in developing anticancer agents.
    Das U; Kumar S; Dimmock JR; Sharma RK
    Curr Cancer Drug Targets; 2012 Jul; 12(6):667-92. PubMed ID: 22463587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiazole in the targeted anticancer drug discovery.
    Ayati A; Emami S; Moghimi S; Foroumadi A
    Future Med Chem; 2019 Aug; 11(15):1929-1952. PubMed ID: 31313595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Targeted cancer therapy: conferring specificity to cytotoxic drugs.
    Chari RV
    Acc Chem Res; 2008 Jan; 41(1):98-107. PubMed ID: 17705444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drug-conjugated monoclonal antibodies for the treatment of cancer.
    Lambert JM
    Curr Opin Pharmacol; 2005 Oct; 5(5):543-9. PubMed ID: 16087399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A personal perspective of the development and validation of a phase-specific antibody-drug conjugate cytotoxicity potency assay.
    Wilson R
    Bioanalysis; 2013 May; 5(9):1083-97. PubMed ID: 23641698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.