These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32463462)

  • 1. NATpare: a pipeline for high-throughput prediction and functional analysis of nat-siRNAs.
    Thody J; Folkes L; Moulton V
    Nucleic Acids Res; 2020 Jul; 48(12):6481-6490. PubMed ID: 32463462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAREsnip2: a tool for high-throughput prediction of small RNA targets from degradome sequencing data using configurable targeting rules.
    Thody J; Folkes L; Medina-Calzada Z; Xu P; Dalmay T; Moulton V
    Nucleic Acids Res; 2018 Sep; 46(17):8730-8739. PubMed ID: 30007348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Small RNAs in angiosperms: sequence characteristics, distribution and generation.
    Chen D; Meng Y; Ma X; Mao C; Bai Y; Cao J; Gu H; Wu P; Chen M
    Bioinformatics; 2010 Jun; 26(11):1391-4. PubMed ID: 20378553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function.
    Zhang X; Xia J; Lii YE; Barrera-Figueroa BE; Zhou X; Gao S; Lu L; Niu D; Chen Z; Leung C; Wong T; Zhang H; Guo J; Li Y; Liu R; Liang W; Zhu JK; Zhang W; Jin H
    Genome Biol; 2012; 13(3):R20. PubMed ID: 22439910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NATpipe: an integrative pipeline for systematical discovery of natural antisense transcripts (NATs) and phase-distributed nat-siRNAs from de novo assembled transcriptomes.
    Yu D; Meng Y; Zuo Z; Xue J; Wang H
    Sci Rep; 2016 Feb; 6():21666. PubMed ID: 26858106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis.
    Jin H; Vacic V; Girke T; Lonardi S; Zhu JK
    BMC Mol Biol; 2008 Jan; 9():6. PubMed ID: 18194570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of ta-siRNAs and cis-nat-siRNAs in cassava and their roles in response to cassava bacterial blight.
    Quintero A; Pérez-Quintero AL; López C
    Genomics Proteomics Bioinformatics; 2013 Jun; 11(3):172-81. PubMed ID: 23665476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous small RNA clusters in plants.
    Liu YX; Wang M; Wang XJ
    Genomics Proteomics Bioinformatics; 2014 Apr; 12(2):64-71. PubMed ID: 24769055
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of cis-natural antisense transcripts and their heat-responsive nat-siRNAs in Brassica rapa.
    Yu X; Yang J; Li X; Liu X; Sun C; Wu F; He Y
    BMC Plant Biol; 2013 Dec; 13():208. PubMed ID: 24320882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The distribution and evolution of Arabidopsis thaliana cis natural antisense transcripts.
    Bouchard J; Oliver C; Harrison PM
    BMC Genomics; 2015 Jun; 16(1):444. PubMed ID: 26054753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PAREameters: a tool for computational inference of plant miRNA-mRNA targeting rules using small RNA and degradome sequencing data.
    Thody J; Moulton V; Mohorianu I
    Nucleic Acids Res; 2020 Mar; 48(5):2258-2270. PubMed ID: 31943065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated detection of natural antisense transcripts using strand-specific RNA sequencing data.
    Li S; Liberman LM; Mukherjee N; Benfey PN; Ohler U
    Genome Res; 2013 Oct; 23(10):1730-9. PubMed ID: 23816784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction and identification of natural antisense transcripts and their small RNAs in soybean (Glycine max).
    Zheng H; Qiyan J; Zhiyong N; Hui Z
    BMC Genomics; 2013 Apr; 14():280. PubMed ID: 23617936
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The UEA Small RNA Workbench: A Suite of Computational Tools for Small RNA Analysis.
    Mohorianu I; Stocks MB; Applegate CS; Folkes L; Moulton V
    Methods Mol Biol; 2017; 1580():193-224. PubMed ID: 28439835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis.
    Mosher RA; Melnyk CW; Kelly KA; Dunn RM; Studholme DJ; Baulcombe DC
    Nature; 2009 Jul; 460(7252):283-6. PubMed ID: 19494814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SRNAome and degradome sequencing analysis reveals specific regulation of sRNA in response to chilling injury in tomato fruit.
    Zuo J; Wang Q; Han C; Ju Z; Cao D; Zhu B; Luo Y; Gao L
    Physiol Plant; 2017 Jun; 160(2):142-154. PubMed ID: 27595790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.
    Hu H; Rashotte AM; Singh NK; Weaver DB; Goertzen LR; Singh SR; Locy RD
    PLoS One; 2015; 10(6):e0127468. PubMed ID: 26070200
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional characterization of plant small RNAs based on next-generation sequencing data.
    Chen M; Meng Y; Gu H; Chen D
    Comput Biol Chem; 2010 Dec; 34(5-6):308-12. PubMed ID: 21030312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput sequencing reveals small RNAs involved in ASGV infection.
    Visser M; Maree HJ; Rees DJ; Burger JT
    BMC Genomics; 2014 Jul; 15(1):568. PubMed ID: 24998458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinformatics analysis of small RNAs in pima (Gossypium barbadense L.).
    Hu H; Yu D; Liu H
    PLoS One; 2015; 10(2):e0116826. PubMed ID: 25679373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.