These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 32463655)

  • 1. Substantial Improvement of Oil Aerosol Filtration Performance Using In-Plane Asymmetric Wettability.
    Wei X; Liu Y; Zhou H; Chen F; Wang H; Ji Z; Chase GG; Lin T
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28852-28860. PubMed ID: 32463655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charged PVDF multilayer nanofiber filter in filtering simulated airborne novel coronavirus (COVID-19) using ambient nano-aerosols.
    Leung WW; Sun Q
    Sep Purif Technol; 2020 Aug; 245():116887. PubMed ID: 32372877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced nano-aerosol loading performance of multilayer PVDF nanofiber electret filters.
    Sun Q; Leung WW
    Sep Purif Technol; 2020 Jun; 240():116606. PubMed ID: 32288610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pressure Drop Dynamics during Filtration of Mixture Aerosol Containing Water, Oil, and Soot Particles on Nonwoven Filters.
    Kamiński M; Gac JM; Sobiech P; Kozikowski P; Jankowski T
    Polymers (Basel); 2023 Apr; 15(7):. PubMed ID: 37050401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Underwater superoleophilic to superoleophobic wetting control on the nanostructured copper substrates.
    Cheng Z; Lai H; Du Y; Fu K; Hou R; Zhang N; Sun K
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11363-70. PubMed ID: 24083992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols.
    Leung WWF; Sun Q
    Sep Purif Technol; 2020 Nov; 250():116886. PubMed ID: 32322159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superamphiphobic nanofibrous membranes for effective filtration of fine particles.
    Wang N; Zhu Z; Sheng J; Al-Deyab SS; Yu J; Ding B
    J Colloid Interface Sci; 2014 Aug; 428():41-8. PubMed ID: 24910033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A versatile, highly effective nanofibrous separation membrane.
    Zhou H; Niu H; Wang H; Yang W; Wei X; Shao H; Lin T
    Nanoscale; 2020 Jan; 12(4):2359-2365. PubMed ID: 31960887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-pot synthesis of catalytic molybdenum based nanocomposite nano-fiber membranes for aerosol air remediation.
    Al-Attabi R; Morsi Y; Schütz JA; Dumée LF
    Sci Total Environ; 2019 Jan; 647():725-733. PubMed ID: 30092529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of pressure drop and filtration efficiency of particulate respirators using welding fumes and sodium chloride.
    Cho HW; Yoon CS; Lee JH; Lee SJ; Viner A; Johnson EW
    Ann Occup Hyg; 2011 Jul; 55(6):666-80. PubMed ID: 21742627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of combined granular media with opposite wettability for demulsification of oily wastewater by microchannel filter.
    Sun Y; Liu Y; Xu B; Ji Z; Xue Z; Yuan W; Ma H; Wang H
    Chemosphere; 2023 Jan; 311(Pt 1):136812. PubMed ID: 36243079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amphiphobic Polytetrafluoroethylene Membranes for Efficient Organic Aerosol Removal.
    Feng S; Zhong Z; Zhang F; Wang Y; Xing W
    ACS Appl Mater Interfaces; 2016 Apr; 8(13):8773-81. PubMed ID: 27002786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental Studies of PowerCore Filters and Pleated Filter Baffles.
    Dziubak T
    Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-Layered, Corona Charged Melt Blown Nonwovens as High Performance PM
    Zhang X; Liu J; Zhang H; Hou J; Wang Y; Deng C; Huang C; Jin X
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33557037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation Mechanism and Construction of Surfaces with Special Wettability for Oil/Water Separation.
    Chen C; Weng D; Mahmood A; Chen S; Wang J
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):11006-11027. PubMed ID: 30811172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Powered, air-purifying particulate respirator filter penetration by a DOP aerosol.
    Martin S; Moyer E; Jensen P
    J Occup Environ Hyg; 2006 Nov; 3(11):620-30. PubMed ID: 17086666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple and Low-Cost Oil/Water Separation Based on the Underwater Superoleophobicity of the Existing Materials in Our Life or Nature.
    Bian H; Yong J; Yang Q; Hou X; Chen F
    Front Chem; 2020; 8():507. PubMed ID: 32733843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.
    Sim KM; Park HS; Bae GN; Jung JH
    Sci Total Environ; 2015 Nov; 533():266-74. PubMed ID: 26172593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature.
    Wang B; Liang W; Guo Z; Liu W
    Chem Soc Rev; 2015 Jan; 44(1):336-61. PubMed ID: 25311259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Switchable wettability of grain-stacked filter layers from polyurethane plastic waste for oil/water separation.
    Sun C; Chen K; Wiafe Biney B; Wang K; Liu H; Guo A; Xia W
    J Colloid Interface Sci; 2022 Mar; 610():970-981. PubMed ID: 34887059
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.