These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32463687)

  • 1. Enhancing NMR Quantum Computation by Exploring Heavy Metal Complexes as Multiqubit Systems: A Theoretical Investigation.
    Lino JBDR; Sauer SPA; Ramalho TC
    J Phys Chem A; 2020 Jun; 124(24):4946-4955. PubMed ID: 32463687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring Through-Space Spin-Spin Couplings for Quantum Information Processing: Facing the Challenge of Coherence Time and Control Quantum States.
    Lino JBDR; Ramalho TC
    J Phys Chem A; 2019 Feb; 123(7):1372-1379. PubMed ID: 30673241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Value of NMR Parameters and DFT Calculations for Quantum Information Processing Utilizing Phosphorus Heterocycles.
    Lino JBR; Rocha EP; Ramalho TC
    J Phys Chem A; 2017 Jun; 121(23):4486-4495. PubMed ID: 28441482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relativistic Zeroth-Order Regular Approximation Combined with Nonhybrid and Hybrid Density Functional Theory: Performance for NMR Indirect Nuclear Spin-Spin Coupling in Heavy Metal Compounds.
    Moncho S; Autschbach J
    J Chem Theory Comput; 2010 Jan; 6(1):223-34. PubMed ID: 26614333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relativistic effects on the NMR parameters of Si, Ge, Sn, and Pb alkynyl compounds: Scalar versus spin-orbit effects.
    Demissie TB
    J Chem Phys; 2017 Nov; 147(17):174301. PubMed ID: 29117685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of two-component and four-component approaches for calculations of spin-spin coupling constants and NMR shielding constants of transition metal cyanides.
    Wodyński A; Repiský M; Pecul M
    J Chem Phys; 2012 Jul; 137(1):014311. PubMed ID: 22779652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, solvent, and relativistic effects on the NMR chemical shifts in square-planar transition-metal complexes: assessment of DFT approaches.
    Vícha J; Novotný J; Straka M; Repisky M; Ruud K; Komorovsky S; Marek R
    Phys Chem Chem Phys; 2015 Oct; 17(38):24944-55. PubMed ID: 26344822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the geometry dependence of the nuclear magnetic resonance chemical shift of mercury in thiolate complexes: A relativistic density functional theory study.
    Wu H; Hemmingsen L; Sauer SPA
    Magn Reson Chem; 2024 May; ():. PubMed ID: 38773942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlated ab initio calculations of one-bond
    Rusakova IL; Rusakov YY
    Magn Reson Chem; 2020 Oct; 58(10):929-940. PubMed ID: 32453871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.
    Jankowska M; Kupka T; Stobiński L; Faber R; Lacerda EG; Sauer SP
    J Comput Chem; 2016 Feb; 37(4):395-403. PubMed ID: 26503739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relativistic DFT Calculations of Hyperfine Coupling Constants in 5d Hexafluorido Complexes: [ReF
    Haase PAB; Repisky M; Komorovsky S; Bendix J; Sauer SPA
    Chemistry; 2018 Apr; 24(20):5124-5133. PubMed ID: 29027277
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR Spin-Spin Coupling Constants Derived from Relativistic Four-Component DFT Theory-Analysis and Visualization.
    Komorovsky S; Jakubowska K; Świder P; Repisky M; Jaszuński M
    J Phys Chem A; 2020 Jun; 124(25):5157-5169. PubMed ID: 32460489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-electron spin qubits.
    Russ M; Burkard G
    J Phys Condens Matter; 2017 Oct; 29(39):393001. PubMed ID: 28562367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Relativistic Effects on the Carbon-Carbon Coupling Constants Mediated by a Heavy Atom.
    Wodyński A; Malkina OL; Pecul M
    J Phys Chem A; 2016 Jul; 120(28):5624-34. PubMed ID: 27177252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics computational study of the 199Hg-199Hg NMR spin-spin coupling constants of [Hg-Hg-Hg]2+ in SO2 solution.
    Autschbach J; Sterzel M
    J Am Chem Soc; 2007 Sep; 129(36):11093-9. PubMed ID: 17713908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR J-coupling constants in cisplatin derivatives studied by molecular dynamics and relativistic DFT.
    Sutter K; Truflandier LA; Autschbach J
    Chemphyschem; 2011 Jun; 12(8):1448-55. PubMed ID: 21381179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of a presence of a heavy atom on the spin-spin coupling constants between two light nuclei in organometallic compounds and halogen derivatives.
    Wodyński A; Pecul M
    J Chem Phys; 2014 Jan; 140(2):024319. PubMed ID: 24437889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.