These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32464047)

  • 1. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.
    Castellanos-Rubio I; Rodrigo I; Olazagoitia-Garmendia A; Arriortua O; Gil de Muro I; Garitaonandia JS; Bilbao JR; Fdez-Gubieda ML; Plazaola F; Orue I; Castellanos-Rubio A; Insausti M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27917-27929. PubMed ID: 32464047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
    Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment.
    Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions.
    Castellanos-Rubio I; Munshi R; Qin Y; Eason DB; Orue I; Insausti M; Pralle A
    Nanoscale; 2018 Nov; 10(46):21879-21892. PubMed ID: 30457620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells.
    Sadhasivam S; Savitha S; Wu CJ; Lin FH; Stobiński L
    Int J Pharm; 2015 Mar; 480(1-2):8-14. PubMed ID: 25601197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe
    Rajan A; Sharma M; Sahu NK
    Sci Rep; 2020 Sep; 10(1):15045. PubMed ID: 32963264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vitro Study of Tumor-Homing Peptide-Modified Magnetic Nanoparticles for Magnetic Hyperthermia.
    Zhou S; Tsutsumiuchi K; Imai R; Miki Y; Kondo A; Nakagawa H; Watanabe K; Ohtsuki T
    Molecules; 2024 Jun; 29(11):. PubMed ID: 38893510
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Milestone in the Chemical Synthesis of Fe
    Castellanos-Rubio I; Arriortua O; Iglesias-Rojas D; Barón A; Rodrigo I; Marcano L; Garitaonandia JS; Orue I; Fdez-Gubieda ML; Insausti M
    Chem Mater; 2021 Nov; 33(22):8693-8704. PubMed ID: 34853492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel kojic acid-polymer-based magnetic nanocomposites for medical applications.
    Hussein-Al-Ali SH; El Zowalaty ME; Hussein MZ; Ismail M; Dorniani D; Webster TJ
    Int J Nanomedicine; 2014; 9():351-62. PubMed ID: 24453486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.
    Chang L; Liu XL; Di Fan D; Miao YQ; Zhang H; Ma HP; Liu QY; Ma P; Xue WM; Luo YE; Fan HM
    Int J Nanomedicine; 2016; 11():1175-85. PubMed ID: 27042065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition.
    Dabbagh A; Hedayatnasab Z; Karimian H; Sarraf M; Yeong CH; Madaah Hosseini HR; Abu Kasim NH; Wong TW; Rahman NA
    Int J Hyperthermia; 2019; 36(1):104-114. PubMed ID: 30428737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of monodispersed water dispersible Fe
    Sharma KS; Ningthoujam RS; Dubey AK; Chattopadhyay A; Phapale S; Juluri RR; Mukherjee S; Tewari R; Shetake NG; Pandey BN; Vatsa RK
    Sci Rep; 2018 Oct; 8(1):14766. PubMed ID: 30283083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flower-like Mn-Doped Magnetic Nanoparticles Functionalized with α
    Del Sol-Fernández S; Portilla-Tundidor Y; Gutiérrez L; Odio OF; Reguera E; Barber DF; Morales MP
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):26648-26663. PubMed ID: 31287950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How size, shape and assembly of magnetic nanoparticles give rise to different hyperthermia scenarios.
    Gavilán H; Simeonidis K; Myrovali E; Mazarío E; Chubykalo-Fesenko O; Chantrell R; Balcells L; Angelakeris M; Morales MP; Serantes D
    Nanoscale; 2021 Oct; 13(37):15631-15646. PubMed ID: 34596185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance.
    Castellanos-Rubio I; Arriortua O; Marcano L; Rodrigo I; Iglesias-Rojas D; Barón A; Olazagoitia-Garmendia A; Olivi L; Plazaola F; Fdez-Gubieda ML; Castellanos-Rubio A; Garitaonandia JS; Orue I; Insausti M
    Chem Mater; 2021 May; 33(9):3139-3154. PubMed ID: 34556898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe
    Zhou P; Zhao H; Wang Q; Zhou Z; Wang J; Deng G; Wang X; Liu Q; Yang H; Yang S
    Adv Healthc Mater; 2018 May; 7(9):e1701201. PubMed ID: 29356419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.
    Makridis A; Chatzitheodorou I; Topouridou K; Yavropoulou MP; Angelakeris M; Dendrinou-Samara C
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():663-70. PubMed ID: 27040263
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.
    Ding Q; Liu D; Guo D; Yang F; Pang X; Che R; Zhou N; Xie J; Sun J; Huang Z; Gu N
    Biomaterials; 2017 Apr; 124():35-46. PubMed ID: 28187393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.