BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 32464047)

  • 1. Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles.
    Castellanos-Rubio I; Rodrigo I; Olazagoitia-Garmendia A; Arriortua O; Gil de Muro I; Garitaonandia JS; Bilbao JR; Fdez-Gubieda ML; Plazaola F; Orue I; Castellanos-Rubio A; Insausti M
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):27917-27929. PubMed ID: 32464047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small versus Large Iron Oxide Magnetic Nanoparticles: Hyperthermia and Cell Uptake Properties.
    Iacovita C; Florea A; Dudric R; Pall E; Moldovan AI; Tetean R; Stiufiuc R; Lucaciu CM
    Molecules; 2016 Oct; 21(10):. PubMed ID: 27754394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilayered inorganic-organic microdisks as ideal carriers for high magnetothermal actuation: assembling ferrimagnetic nanoparticles devoid of dipolar interactions.
    Castellanos-Rubio I; Munshi R; Qin Y; Eason DB; Orue I; Insausti M; Pralle A
    Nanoscale; 2018 Nov; 10(46):21879-21892. PubMed ID: 30457620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-Generating Iron Oxide Multigranule Nanoclusters for Enhancing Hyperthermic Efficacy in Tumor Treatment.
    Jeon S; Park BC; Lim S; Yoon HY; Jeon YS; Kim BS; Kim YK; Kim K
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33483-33491. PubMed ID: 32614594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Outstanding heat loss via nano-octahedra above 20 nm in size: from wustite-rich nanoparticles to magnetite single-crystals.
    Castellanos-Rubio I; Rodrigo I; Munshi R; Arriortua O; Garitaonandia JS; Martinez-Amesti A; Plazaola F; Orue I; Pralle A; Insausti M
    Nanoscale; 2019 Sep; 11(35):16635-16649. PubMed ID: 31460555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells.
    Sadhasivam S; Savitha S; Wu CJ; Lin FH; Stobiński L
    Int J Pharm; 2015 Mar; 480(1-2):8-14. PubMed ID: 25601197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing magnetic and inductive thermal properties of various surfactants functionalised Fe
    Rajan A; Sharma M; Sahu NK
    Sci Rep; 2020 Sep; 10(1):15045. PubMed ID: 32963264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells.
    Soleymani M; Khalighfard S; Khodayari S; Khodayari H; Kalhori MR; Hadjighassem MR; Shaterabadi Z; Alizadeh AM
    Sci Rep; 2020 Feb; 10(1):1695. PubMed ID: 32015364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Milestone in the Chemical Synthesis of Fe
    Castellanos-Rubio I; Arriortua O; Iglesias-Rojas D; Barón A; Rodrigo I; Marcano L; Garitaonandia JS; Orue I; Fdez-Gubieda ML; Insausti M
    Chem Mater; 2021 Nov; 33(22):8693-8704. PubMed ID: 34853492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel kojic acid-polymer-based magnetic nanocomposites for medical applications.
    Hussein-Al-Ali SH; El Zowalaty ME; Hussein MZ; Ismail M; Dorniani D; Webster TJ
    Int J Nanomedicine; 2014; 9():351-62. PubMed ID: 24453486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The efficiency of magnetic hyperthermia and in vivo histocompatibility for human-like collagen protein-coated magnetic nanoparticles.
    Chang L; Liu XL; Di Fan D; Miao YQ; Zhang H; Ma HP; Liu QY; Ma P; Xue WM; Luo YE; Fan HM
    Int J Nanomedicine; 2016; 11():1175-85. PubMed ID: 27042065
    [TBL] [Abstract]