BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32464057)

  • 1. Polymer-Based Bioorthogonal Nanocatalysts for the Treatment of Bacterial Biofilms.
    Huang R; Li CH; Cao-Milán R; He LD; Makabenta JM; Zhang X; Yu E; Rotello VM
    J Am Chem Soc; 2020 Jun; 142(24):10723-10729. PubMed ID: 32464057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradable Antibacterial Bioorthogonal Polymeric Nanocatalysts Prepared by Flash Nanoprecipitation.
    Fedeli S; Huang R; Oz Y; Zhang X; Gupta A; Gopalakrishnan S; Makabenta JMV; Lamkin S; Sanyal A; Xu Y; Rotello VM
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15260-15268. PubMed ID: 36920076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. All-natural gelatin-based bioorthogonal catalysts for efficient eradication of bacterial biofilms.
    Nabawy A; Huang R; Luther DC; Zhang X; Li CH; Makabenta JM; Rotello VM
    Chem Sci; 2022 Oct; 13(41):12071-12077. PubMed ID: 36349111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intracellular Activation of Anticancer Therapeutics Using Polymeric Bioorthogonal Nanocatalysts.
    Zhang X; Landis RF; Keshri P; Cao-Milán R; Luther DC; Gopalakrishnan S; Liu Y; Huang R; Li G; Malassiné M; Uddin I; Rondon B; Rotello VM
    Adv Healthc Mater; 2021 Mar; 10(5):e2001627. PubMed ID: 33314745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineered Polymer-Supported Biorthogonal Nanocatalysts Using Flash Nanoprecipitation.
    Huang R; Hirschbiegel CM; Zhang X; Gupta A; Fedeli S; Xu Y; Rotello VM
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):31594-31600. PubMed ID: 35802797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradable nanoemulsion-based bioorthogonal nanocatalysts for intracellular generation of anticancer therapeutics.
    Nabawy A; Gupta A; Jiang M; Hirschbiegel CM; Fedeli S; Chattopadhyay AN; Park J; Zhang X; Liu L; Rotello VM
    Nanoscale; 2023 Aug; 15(33):13595-13602. PubMed ID: 37554065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ activation of therapeutics through bioorthogonal catalysis.
    Wang W; Zhang X; Huang R; Hirschbiegel CM; Wang H; Ding Y; Rotello VM
    Adv Drug Deliv Rev; 2021 Sep; 176():113893. PubMed ID: 34333074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular regulation of bioorthogonal catalysis in cells using nanoparticle-embedded transition metal catalysts.
    Tonga GY; Jeong Y; Duncan B; Mizuhara T; Mout R; Das R; Kim ST; Yeh YC; Yan B; Hou S; Rotello VM
    Nat Chem; 2015 Jul; 7(7):597-603. PubMed ID: 26100809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterial-based bioorthogonal nanozymes for biological applications.
    Fedeli S; Im J; Gopalakrishnan S; Elia JL; Gupta A; Kim D; Rotello VM
    Chem Soc Rev; 2021 Dec; 50(24):13467-13480. PubMed ID: 34787131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered Polymer Nanoparticles with Unprecedented Antimicrobial Efficacy and Therapeutic Indices against Multidrug-Resistant Bacteria and Biofilms.
    Gupta A; Landis RF; Li CH; Schnurr M; Das R; Lee YW; Yazdani M; Liu Y; Kozlova A; Rotello VM
    J Am Chem Soc; 2018 Sep; 140(38):12137-12143. PubMed ID: 30169023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular Fabrication of Bioorthogonal Nanozymes for Biomedical Applications.
    Huang R; Hirschbiegel CM; Lehot V; Liu L; Cicek YA; Rotello VM
    Adv Mater; 2024 Mar; 36(10):e2300943. PubMed ID: 37042795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradable ZnS-Supported Bioorthogonal Nanozymes with Enhanced Catalytic Activity for Intracellular Activation of Therapeutics.
    Zhang X; Lin S; Huang R; Gupta A; Fedeli S; Cao-Milán R; Luther DC; Liu Y; Jiang M; Li G; Rondon B; Wei H; Rotello VM
    J Am Chem Soc; 2022 Jul; 144(28):12893-12900. PubMed ID: 35786910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Erythrocyte-mediated delivery of bioorthogonal nanozymes for selective targeting of bacterial infections.
    Gupta A; Das R; Makabenta JM; Gupta A; Zhang X; Jeon T; Huang R; Liu Y; Gopalakrishnan S; Milán RC; Rotello VM
    Mater Horiz; 2021 Nov; 8(12):3424-3431. PubMed ID: 34700339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inorganic nanoparticles as scaffolds for bioorthogonal catalysts.
    Hirschbiegel CM; Zhang X; Huang R; Cicek YA; Fedeli S; Rotello VM
    Adv Drug Deliv Rev; 2023 Apr; 195():114730. PubMed ID: 36791809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-Linked Polymer-Stabilized Nanocomposites for the Treatment of Bacterial Biofilms.
    Landis RF; Gupta A; Lee YW; Wang LS; Golba B; Couillaud B; Ridolfo R; Das R; Rotello VM
    ACS Nano; 2017 Jan; 11(1):946-952. PubMed ID: 28005325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous synthesis of silver nanoparticle embedded cationic polymer nanofibers and their antibacterial activity.
    Song J; Kang H; Lee C; Hwang SH; Jang J
    ACS Appl Mater Interfaces; 2012 Jan; 4(1):460-5. PubMed ID: 22181053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioorthogonal nanozymes: an emerging strategy for disease therapy.
    Zhang Z; Fan K
    Nanoscale; 2022 Dec; 15(1):41-62. PubMed ID: 36512377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-Switchable Nanozymes for Bioorthogonal Imaging of Biofilm-Associated Infections.
    Gupta A; Das R; Yesilbag Tonga G; Mizuhara T; Rotello VM
    ACS Nano; 2018 Jan; 12(1):89-94. PubMed ID: 29244484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imprinted Polymer Beads Loaded with Silver Nanoparticles for Antibacterial Applications.
    Gong H; Hajizadeh S; Liu W; Ye L
    ACS Appl Bio Mater; 2021 Mar; 4(3):2829-2838. PubMed ID: 35014322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial Applications of Silver Nanoparticles to E. coli Colony Biofilms.
    McEvoy JP; Genc K; Loi P; Walker WJ
    Methods Mol Biol; 2020; 2118():21-28. PubMed ID: 32152968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.