These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 32464283)

  • 1. In vitro prototyping of limonene biosynthesis using cell-free protein synthesis.
    Dudley QM; Karim AS; Nash CJ; Jewett MC
    Metab Eng; 2020 Sep; 61():251-260. PubMed ID: 32464283
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design.
    Karim AS; Dudley QM; Juminaga A; Yuan Y; Crowe SA; Heggestad JT; Garg S; Abdalla T; Grubbe WS; Rasor BJ; Coar DN; Torculas M; Krein M; Liew FE; Quattlebaum A; Jensen RO; Stuart JA; Simpson SD; Köpke M; Jewett MC
    Nat Chem Biol; 2020 Aug; 16(8):912-919. PubMed ID: 32541965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-Free Synthetic Biology for Pathway Prototyping.
    Karim AS; Jewett MC
    Methods Enzymol; 2018; 608():31-57. PubMed ID: 30173768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery.
    Karim AS; Jewett MC
    Metab Eng; 2016 Jul; 36():116-126. PubMed ID: 26996382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Free Protein Synthesis for High-Throughput Biosynthetic Pathway Prototyping.
    Rasor BJ; Vögeli B; Jewett MC; Karim AS
    Methods Mol Biol; 2022; 2433():199-215. PubMed ID: 34985746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Free Mixing of Escherichia coli Crude Extracts to Prototype and Rationally Engineer High-Titer Mevalonate Synthesis.
    Dudley QM; Anderson KC; Jewett MC
    ACS Synth Biol; 2016 Dec; 5(12):1578-1588. PubMed ID: 27476989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid prototyping enzyme homologs to improve titer of nicotinamide mononucleotide using a strategy combining cell-free protein synthesis with split GFP.
    Yuan Q; Wu M; Liao Y; Liang S; Lu Y; Lin Y
    Biotechnol Bioeng; 2023 Apr; 120(4):1133-1146. PubMed ID: 36585353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in metabolic engineering for the microbial production of naturally occurring terpenes-limonene and bisabolene: a mini review].
    Pang Y; Hu Z; Xiao D; Yu A
    Sheng Wu Gong Cheng Xue Bao; 2018 Jan; 34(1):24-33. PubMed ID: 29380568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell-free biosynthesis of limonene using enzyme-enriched
    Dudley QM; Nash CJ; Jewett MC
    Synth Biol (Oxf); 2019; 4(1):ysz003. PubMed ID: 30873438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling cell-free metabolism through physiochemical perturbations.
    Karim AS; Heggestad JT; Crowe SA; Jewett MC
    Metab Eng; 2018 Jan; 45():86-94. PubMed ID: 29155060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-free protein synthesis enabled rapid prototyping for metabolic engineering and synthetic biology.
    Jiang L; Zhao J; Lian J; Xu Z
    Synth Syst Biotechnol; 2018 Jun; 3(2):90-96. PubMed ID: 29900421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial production of limonene and its derivatives: Achievements and perspectives.
    Ren Y; Liu S; Jin G; Yang X; Zhou YJ
    Biotechnol Adv; 2020 Nov; 44():107628. PubMed ID: 32882371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishing a versatile toolkit of flux enhanced strains and cell extracts for pathway prototyping.
    Yi X; Rasor BJ; Boadi N; Louie K; Northen TR; Karim AS; Jewett MC; Alper HS
    Metab Eng; 2023 Nov; 80():241-253. PubMed ID: 37890611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated in vivo/in vitro framework to enhance cell-free biosynthesis with metabolically rewired yeast extracts.
    Rasor BJ; Yi X; Brown H; Alper HS; Jewett MC
    Nat Commun; 2021 Aug; 12(1):5139. PubMed ID: 34446711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orthogonal Engineering of Biosynthetic Pathway for Efficient Production of Limonene in Saccharomyces cerevisiae.
    Cheng S; Liu X; Jiang G; Wu J; Zhang JL; Lei D; Yuan YJ; Qiao J; Zhao GR
    ACS Synth Biol; 2019 May; 8(5):968-975. PubMed ID: 31063692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic Optimization of Limonene Production in Engineered Escherichia coli.
    Wu J; Cheng S; Cao J; Qiao J; Zhao GR
    J Agric Food Chem; 2019 Jun; 67(25):7087-7097. PubMed ID: 31199132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.
    Lin PC; Saha R; Zhang F; Pakrasi HB
    Sci Rep; 2017 Dec; 7(1):17503. PubMed ID: 29235513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a clostridia-based cell-free system for prototyping genetic parts and metabolic pathways.
    Krüger A; Mueller AP; Rybnicky GA; Engle NL; Yang ZK; Tschaplinski TJ; Simpson SD; Köpke M; Jewett MC
    Metab Eng; 2020 Nov; 62():95-105. PubMed ID: 32540392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems biology approach for enhancing limonene yield by re-engineering Escherichia coli.
    Khanijou JK; Hee YT; Scipion CPM; Chen X; Selvarajoo K
    NPJ Syst Biol Appl; 2024 Oct; 10(1):109. PubMed ID: 39353984
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinatorial metabolic pathway assembly approaches and toolkits for modular assembly.
    Young R; Haines M; Storch M; Freemont PS
    Metab Eng; 2021 Jan; 63():81-101. PubMed ID: 33301873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.