These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 32464283)

  • 21. A Gram-Scale Limonene Production Process with Engineered
    Rolf J; Julsing MK; Rosenthal K; Lütz S
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32325737
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupling limonene formation and oxyfunctionalization by mixed-culture resting cell fermentation.
    Willrodt C; Hoschek A; Bühler B; Schmid A; Julsing MK
    Biotechnol Bioeng; 2015 Sep; 112(9):1738-50. PubMed ID: 25786991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering Limonene and Bisabolene Production in Wild Type and a Glycogen-Deficient Mutant of Synechococcus sp. PCC 7002.
    Davies FK; Work VH; Beliaev AS; Posewitz MC
    Front Bioeng Biotechnol; 2014; 2():21. PubMed ID: 25152894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of a Limonene Synthesis Metabolon Inside Living Bacteria by Hyperspectral SRS Microscopy.
    Zhang J; Shin J; Tague N; Lin H; Zhang M; Ge X; Wong W; Dunlop MJ; Cheng JX
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203887. PubMed ID: 36169112
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolic Engineering of the Isopentenol Utilization Pathway Enhanced the Production of Terpenoids in
    Zhao ML; Cai WS; Zheng SQ; Zhao JL; Zhang JL; Huang Y; Hu ZL; Jia B
    Mar Drugs; 2022 Sep; 20(9):. PubMed ID: 36135766
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production.
    Alonso-Gutierrez J; Chan R; Batth TS; Adams PD; Keasling JD; Petzold CJ; Lee TS
    Metab Eng; 2013 Sep; 19():33-41. PubMed ID: 23727191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Targeted Growth Medium Dropouts Promote Aromatic Compound Synthesis in Crude
    Mohr B; Giannone RJ; Hettich RL; Doktycz MJ
    ACS Synth Biol; 2020 Nov; 9(11):2986-2997. PubMed ID: 33044063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole-cell biocatalysts by design.
    Lin B; Tao Y
    Microb Cell Fact; 2017 Jun; 16(1):106. PubMed ID: 28610636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tools and strategies for constructing cell-free enzyme pathways.
    Petroll K; Kopp D; Care A; Bergquist PL; Sunna A
    Biotechnol Adv; 2019; 37(1):91-108. PubMed ID: 30521853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell-free synthetic biology for
    Moore SJ; MacDonald JT; Freemont PS
    Biochem Soc Trans; 2017 Jun; 45(3):785-791. PubMed ID: 28620040
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid prototyping of microbial cell factories via genome-scale engineering.
    Si T; Xiao H; Zhao H
    Biotechnol Adv; 2015 Nov; 33(7):1420-32. PubMed ID: 25450192
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pathway engineering for functional isoprenoids.
    Misawa N
    Curr Opin Biotechnol; 2011 Oct; 22(5):627-33. PubMed ID: 21310602
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A synthetic biochemistry platform for cell free production of monoterpenes from glucose.
    Korman TP; Opgenorth PH; Bowie JU
    Nat Commun; 2017 May; 8():15526. PubMed ID: 28537253
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein Acylation Affects the Artificial Biosynthetic Pathway for Pinosylvin Production in Engineered E. coli.
    Xu JY; Xu Y; Chu X; Tan M; Ye BC
    ACS Chem Biol; 2018 May; 13(5):1200-1208. PubMed ID: 29690763
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishing a
    Yang C; Yang M; Zhao W; Ding Y; Wang Y; Li J
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol.
    Kay JE; Jewett MC
    Metab Eng; 2015 Nov; 32():133-142. PubMed ID: 26428449
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology.
    Kelwick RJR; Webb AJ; Freemont PS
    Front Bioeng Biotechnol; 2020; 8():399. PubMed ID: 32478045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.