These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32464434)

  • 1. Role of arginine kinase in Paramecium tetraurelia (Ciliophora, Peniculida): Subcellular localization of AK3 and phosphoarginine shuttle system in cilia.
    Yano D; Funadani R; Uda K; Matsuoka T; Suzuki T
    Eur J Protistol; 2020 Jun; 74():125705. PubMed ID: 32464434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of four arginine kinases in the ciliate Paramecium tetraurelia: Investigation on the substrate inhibition mechanism.
    Yano D; Suzuki T; Hirokawa S; Fuke K; Suzuki T
    Int J Biol Macromol; 2017 Aug; 101():653-659. PubMed ID: 28359889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP-regenerating system in the cilia of Paramecium caudatum.
    Noguchi M; Sawada T; Akazawa T
    J Exp Biol; 2001 Mar; 204(Pt 6):1063-71. PubMed ID: 11222125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two arginine kinases of Tetrahymena pyriformis: characterization and localization.
    Michibata J; Okazaki N; Motomura S; Uda K; Fujiwara S; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2014 May; 171():34-41. PubMed ID: 24726623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Analyses of the Substrate Inhibition of Paramecium Arginine Kinase.
    Yano D; Suzuki T
    Protein J; 2018 Dec; 37(6):581-588. PubMed ID: 30328548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel arginine kinase from the shrimp Neocaridina denticulata: the fourth arginine kinase gene lineage.
    Iwanami K; Iseno S; Uda K; Suzuki T
    Gene; 2009 May; 437(1-2):80-7. PubMed ID: 19268694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of effective concentrations of ATP-regenerating enzymes in cilia of Paramecium caudatum.
    Kutomi O; Takemura M; Kamachi H; Noguchi M
    J Eukaryot Microbiol; 2012; 59(1):49-53. PubMed ID: 22092750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary ciliary dyskinesia relative protein ZMYND10 is involved in regulating ciliary function and intraflagellar transport in Paramecium tetraurelia.
    Shi L; Shen X; Chi Y; Shen Y
    Eur J Protistol; 2021 Feb; 77():125756. PubMed ID: 33279757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for N-Terminal Myristoylation of Tetrahymena Arginine Kinase Using Peptide Mass Fingerprinting Analysis.
    Motomura S; Suzuki T
    Protein J; 2016 Jun; 35(3):212-7. PubMed ID: 27129461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein phosphatase 2C is involved in the cAMP-dependent ciliary control in Paramecium caudatum.
    Noguchi M; Sasaki JY; Kamachi H; Inoue H
    Cell Motil Cytoskeleton; 2003 Feb; 54(2):95-104. PubMed ID: 12529856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca(2+)-binding proteins of cilia and infraciliary lattice of Paramecium tetraurelia: their phosphorylation by purified endogenous Ca(2+)-dependent protein kinases.
    Kim K; Son M; Peterson JB; Nelson DL
    J Cell Sci; 2002 May; 115(Pt 9):1973-84. PubMed ID: 11956328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ciliary dynein of Paramecium tetraurelia: photolytic maps of the three heavy chains.
    Beckwith SM; Asai DJ
    Cell Motil Cytoskeleton; 1993; 24(1):29-38. PubMed ID: 8319265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for Paramecium tetraurelia ciliary membrane protein identification and function.
    Valentine M; Yano J; Lodh S; Nabi A; Deng B; Van Houten J
    Methods Cell Biol; 2023; 175():177-219. PubMed ID: 36967141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Outer dynein arm light chain 1 is essential for controlling the ciliary response to cyclic AMP in Paramecium tetraurelia.
    Kutomi O; Hori M; Ishida M; Tominaga T; Kamachi H; Koll F; Cohen J; Yamada N; Noguchi M
    Eukaryot Cell; 2012 May; 11(5):645-53. PubMed ID: 22427431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene structures of three vertebrate adenylate kinase isozymes.
    Nakazawa A; Yamada M; Tanaka H; Shahjahan M; Tanabe T
    Prog Clin Biol Res; 1990; 344():495-514. PubMed ID: 2168054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraflagellar Transport 80 Is Required for Cilia Construction and Maintenance in Paramecium tetraurelia.
    Shi L; Chi Y; Shen X; Lu G; Shen Y
    J Eukaryot Microbiol; 2020 Sep; 67(5):521-531. PubMed ID: 32369644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silencing of ciliary protein ZMYND10 affects amitotic macronucleus division in Paramecium tetraurelia.
    Shi L; Shen Y
    Eur J Protistol; 2022 Feb; 82():125863. PubMed ID: 35065333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voltage-gated calcium channels of Paramecium cilia.
    Lodh S; Yano J; Valentine MS; Van Houten JL
    J Exp Biol; 2016 Oct; 219(Pt 19):3028-3038. PubMed ID: 27707864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inositol lipids of Paramecium tetraurelia and preliminary characterizations of phosphoinositide kinase activity in the ciliary membrane.
    Suchard SJ; Rhoads DE; Kaneshiro ES
    J Protozool; 1989; 36(2):185-90. PubMed ID: 2542540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Paramecium has two regulatory subunits of cyclic AMP-dependent protein kinase, one unique to cilia.
    Hochstrasser M; Carlson GL; Walczak CE; Nelson DL
    J Eukaryot Microbiol; 1996; 43(4):356-62. PubMed ID: 8768441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.