BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

688 related articles for article (PubMed ID: 32464768)

  • 1. Mitigation of environmentally-related hazardous pollutants from water matrices using nanostructured materials - A review.
    Bilal M; Rasheed T; Mehmood S; Tang H; Ferreira LFR; Bharagava RN; Iqbal HMN
    Chemosphere; 2020 Aug; 253():126770. PubMed ID: 32464768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carrageenan-based nano-hybrid materials for the mitigation of hazardous environmental pollutants.
    Li W; Qamar SA; Qamar M; Basharat A; Bilal M; Iqbal HMN
    Int J Biol Macromol; 2021 Nov; 190():700-712. PubMed ID: 34520777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene materials in pollution trace detection and environmental improvement.
    Singh R; Samuel MS; Ravikumar M; Ethiraj S; Kumar M
    Environ Res; 2024 Feb; 243():117830. PubMed ID: 38056611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alginate-based nano-adsorbent materials - Bioinspired solution to mitigate hazardous environmental pollutants.
    Qamar SA; Qamar M; Basharat A; Bilal M; Cheng H; Iqbal HMN
    Chemosphere; 2022 Feb; 288(Pt 3):132618. PubMed ID: 34678347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Pharmaceutical Contaminants in Wastewater Using Nanomaterials: A Comprehensive Review.
    Chauhan A; Sillu D; Agnihotri S
    Curr Drug Metab; 2019; 20(6):483-505. PubMed ID: 30479212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TiO
    Rasheed T; Adeel M; Nabeel F; Bilal M; Iqbal HMN
    Sci Total Environ; 2019 Oct; 688():299-311. PubMed ID: 31229826
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Trends in the Application of Nanomaterials for the Removal of Emerging Micropollutants and Pathogens from Water.
    Kokkinos P; Mantzavinos D; Venieri D
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32357416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on adsorption of heavy metals from wastewater using carbon nanotube and graphene-based nanomaterials.
    Chandran DG; Muruganandam L; Biswas R
    Environ Sci Pollut Res Int; 2023 Nov; 30(51):110010-110046. PubMed ID: 37804379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MXene-based designer nanomaterials and their exploitation to mitigate hazardous pollutants from environmental matrices.
    Zhang S; Bilal M; Adeel M; Barceló D; Iqbal HMN
    Chemosphere; 2021 Nov; 283():131293. PubMed ID: 34182621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MXenes as emerging nanomaterials in water purification and environmental remediation.
    Yu S; Tang H; Zhang D; Wang S; Qiu M; Song G; Fu D; Hu B; Wang X
    Sci Total Environ; 2022 Mar; 811():152280. PubMed ID: 34896484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon-based sustainable nanomaterials for water treatment: State-of-art and future perspectives.
    Nasrollahzadeh M; Sajjadi M; Iravani S; Varma RS
    Chemosphere; 2021 Jan; 263():128005. PubMed ID: 33297038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater.
    Ramalingam G; Perumal N; Priya AK; Rajendran S
    Chemosphere; 2022 Aug; 300():134391. PubMed ID: 35367486
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications and implications of carbon nanotubes for the sequestration of organic and inorganic pollutants from wastewater.
    Majumder S; Dhara B; Mitra AK; Dey S
    Environ Sci Pollut Res Int; 2023 Dec; 30(60):124934-124949. PubMed ID: 36719577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon-based nanomaterial intervention and efficient removal of various contaminants from effluents - A review.
    Manimegalai S; Vickram S; Deena SR; Rohini K; Thanigaivel S; Manikandan S; Subbaiya R; Karmegam N; Kim W; Govarthanan M
    Chemosphere; 2023 Jan; 312(Pt 1):137319. PubMed ID: 36410505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multifunctional nanomaterials and nanocomposites for sensing and monitoring of environmentally hazardous heavy metal contaminants.
    Liaquat H; Imran M; Latif S; Hussain N; Bilal M
    Environ Res; 2022 Nov; 214(Pt 1):113795. PubMed ID: 35803339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybridized 2D Nanomaterials Toward Highly Efficient Photocatalysis for Degrading Pollutants: Current Status and Future Perspectives.
    Guan G; Ye E; You M; Li Z
    Small; 2020 May; 16(19):e1907087. PubMed ID: 32301226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanohybrid catalysts with porous structures for environmental remediation through photocatalytic degradation of emerging pollutants.
    González-González RB; Parra-Saldívar R; Alsanie WF; Iqbal HMN
    Environ Res; 2022 Nov; 214(Pt 2):113955. PubMed ID: 35932836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano and micro architectured cues as smart materials to mitigate recalcitrant pharmaceutical pollutants from wastewater.
    Rasheed T; Ahmad N; Ali J; Hassan AA; Sher F; Rizwan K; Iqbal HMN; Bilal M
    Chemosphere; 2021 Jul; 274():129785. PubMed ID: 33548642
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prospecting carbon-based nanomaterials for the treatment and degradation of endocrine-disrupting pollutants.
    González-González RB; Rodríguez-Hernández JA; Araújo RG; Sharma P; Parra-Saldívar R; Ramirez-Mendoza RA; Bilal M; Iqbal HMN
    Chemosphere; 2022 Jun; 297():134172. PubMed ID: 35248594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale materials and their use in water contaminants removal-a review.
    Mohmood I; Lopes CB; Lopes I; Ahmad I; Duarte AC; Pereira E
    Environ Sci Pollut Res Int; 2013 Mar; 20(3):1239-60. PubMed ID: 23292223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.