BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 32466087)

  • 1. Role of Cytochrome P450 Enzymes in Plant Stress Response.
    Pandian BA; Sathishraj R; Djanaguiraman M; Prasad PVV; Jugulam M
    Antioxidants (Basel); 2020 May; 9(5):. PubMed ID: 32466087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytochrome P450 Gene Families: Role in Plant Secondary Metabolites Production and Plant Defense.
    Chakraborty P; Biswas A; Dey S; Bhattacharjee T; Chakrabarty S
    J Xenobiot; 2023 Jul; 13(3):402-423. PubMed ID: 37606423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant cytochrome P450s: Role in stress tolerance and potential applications for human welfare.
    Singh A; Panwar R; Mittal P; Hassan MI; Singh IK
    Int J Biol Macromol; 2021 Aug; 184():874-886. PubMed ID: 34175340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fungal Cytochrome P450s and the P450 Complement (CYPome) of Fusarium graminearum.
    Shin J; Kim JE; Lee YW; Son H
    Toxins (Basel); 2018 Mar; 10(3):. PubMed ID: 29518888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering medicinal plant-derived CYPs: a promising strategy for production of high-valued secondary metabolites.
    Sethi A; Bhandawat A; Pati PK
    Planta; 2022 Nov; 256(6):119. PubMed ID: 36378350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation.
    Srivastava S; Sangwan RS; Tripathi S; Mishra B; Narnoliya LK; Misra LN; Sangwan NS
    Protoplasma; 2015 Nov; 252(6):1421-37. PubMed ID: 25687294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity and evolution of cytochrome P450s of Jacobaea vulgaris and Jacobaea aquatica.
    Chen Y; Klinkhamer PGL; Memelink J; Vrieling K
    BMC Plant Biol; 2020 Jul; 20(1):342. PubMed ID: 32689941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Versatile biocatalysis of fungal cytochrome P450 monooxygenases.
    Durairaj P; Hur JS; Yun H
    Microb Cell Fact; 2016 Jul; 15(1):125. PubMed ID: 27431996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome P450 mono-oxygenases in conifer genomes: discovery of members of the terpenoid oxygenase superfamily in spruce and pine.
    Hamberger B; Bohlmann J
    Biochem Soc Trans; 2006 Dec; 34(Pt 6):1209-14. PubMed ID: 17073787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of 3-aminobenzanthrone, a human metabolite of carcinogenic environmental pollutant 3-nitrobenzanthrone, by cytochromes P450 - similarity between human and rat enzymes.
    Mizerovska J; Dracinska H; Arlt VM; Schmeiser HH; Frei E; Stiborova M
    Neuro Endocrinol Lett; 2009; 30 Suppl 1():52-9. PubMed ID: 20027145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytochrome P450s: mechanisms and biological implications in drug metabolism and its interaction with oxidative stress.
    Bhattacharyya S; Sinha K; Sil PC
    Curr Drug Metab; 2014; 15(7):719-42. PubMed ID: 25429675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics.
    Miksys S; Tyndale RF
    Drug Metab Rev; 2004 May; 36(2):313-33. PubMed ID: 15237857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome P450 in the central nervous system as a therapeutic target in neurodegenerative diseases.
    Navarro-Mabarak C; Camacho-Carranza R; Espinosa-Aguirre JJ
    Drug Metab Rev; 2018 May; 50(2):95-108. PubMed ID: 29451034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of the microsomal mixed function oxidases and biological and pathological implications.
    Cederbaum AI
    Redox Biol; 2015; 4():60-73. PubMed ID: 25498968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cytochrome P450 enzymes: A driving force of plant diterpene diversity.
    Bathe U; Tissier A
    Phytochemistry; 2019 May; 161():149-162. PubMed ID: 30733060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The current understanding of the interactions between nanoparticles and cytochrome P450 enzymes - a literature-based review.
    Pan Y; Ong CE; Pung YF; Chieng JY
    Xenobiotica; 2019 Jul; 49(7):863-876. PubMed ID: 30028220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cytochrome P450 activity and its alteration in different diseases].
    Orellana M; Guajardo V
    Rev Med Chil; 2004 Jan; 132(1):85-94. PubMed ID: 15379059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New insights on the marine cytochrome P450 enzymes and their biotechnological importance.
    Sharifian S; Homaei A; Kamrani E; Etzerodt T; Patel S
    Int J Biol Macromol; 2020 Jan; 142():811-821. PubMed ID: 31622713
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of enzymes other than CYPs in the oxidative metabolism of xenobiotics.
    Strolin Benedetti M; Whomsley R; Baltes E
    Expert Opin Drug Metab Toxicol; 2006 Dec; 2(6):895-921. PubMed ID: 17125408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of maize cytochrome P450 (CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies.
    Huang H; Wang D; Wen B; Lv J; Zhang S
    Sci Total Environ; 2019 Mar; 656():364-372. PubMed ID: 30513427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.