These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 32466098)
1. Ascorbic Acid Promotes Functional Restoration after Spinal Cord Injury Partly by Epigenetic Modulation. Hong JY; Davaa G; Yoo H; Hong K; Hyun JK Cells; 2020 May; 9(5):. PubMed ID: 32466098 [TBL] [Abstract][Full Text] [Related]
2. Exercise Ameliorates Spinal Cord Injury by Changing DNA Methylation. Davaa G; Hong JY; Kim TU; Lee SJ; Kim SY; Hong K; Hyun JK Cells; 2021 Jan; 10(1):. PubMed ID: 33445717 [TBL] [Abstract][Full Text] [Related]
3. DNA hydroxymethylation mediated traumatic spinal injury by influencing cell death-related gene expression. Sun H; Miao Z; Wang H; Tao Y; Yang J; Cai J; Wang J; Wang Y J Cell Biochem; 2018 Nov; 119(11):9295-9302. PubMed ID: 30074258 [TBL] [Abstract][Full Text] [Related]
4. The expression of TET3 regulated cell proliferation in HepG2 cells. Zhong X; Liu D; Hao Y; Li C; Hao J; Lin C; Shi S; Wang D Gene; 2019 May; 698():113-119. PubMed ID: 30836118 [TBL] [Abstract][Full Text] [Related]
5. Decellularized brain matrix enhances macrophage polarization and functional improvements in rat spinal cord injury. Hong JY; Seo Y; Davaa G; Kim HW; Kim SH; Hyun JK Acta Biomater; 2020 Jan; 101():357-371. PubMed ID: 31711898 [TBL] [Abstract][Full Text] [Related]
6. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
7. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI. Hains BC; Saab CY; Lo AC; Waxman SG Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836 [TBL] [Abstract][Full Text] [Related]
8. Functional Recovery of Carbon Nanotube/Nafion Nanocomposite in Rat Model of Spinal Cord Injury. Imani S; Zagari Z; Rezaei Zarchi S; Jorjani M; Nasri S Artif Cells Nanomed Biotechnol; 2016; 44(1):144-9. PubMed ID: 25861814 [TBL] [Abstract][Full Text] [Related]
9. TET3 Mediates Alterations in the Epigenetic Marker 5hmC and Akt pathway in Steroid-Associated Osteonecrosis. Zhao J; Ma XL; Ma JX; Sun L; Lu B; Wang Y; Xing GS; Wang Y; Dong BC; Xu LY; Kuang MJ; Fu L; Bai HH; Ma Y; Jin WL J Bone Miner Res; 2017 Feb; 32(2):319-332. PubMed ID: 27627619 [TBL] [Abstract][Full Text] [Related]
10. DNA methylation and hydroxymethylation have distinct genome-wide profiles related to axonal regeneration. Madrid A; Borth LE; Hogan KJ; Hariharan N; Papale LA; Alisch RS; Iskandar BJ Epigenetics; 2021 Jan; 16(1):64-78. PubMed ID: 32633672 [TBL] [Abstract][Full Text] [Related]
11. Harpagide inhibits neuronal apoptosis and promotes axonal regeneration after spinal cord injury in rats by activating the Wnt/β-catenin signaling pathway. Rong Y; Liu W; Zhou Z; Gong F; Bai J; Fan J; Li L; Luo Y; Zhou Z; Cai W Brain Res Bull; 2019 May; 148():91-99. PubMed ID: 30940474 [TBL] [Abstract][Full Text] [Related]
12. Delayed granulocyte colony-stimulating factor treatment promotes functional recovery in rats with severe contusive spinal cord injury. Lee JS; Yang CC; Kuo YM; Sze CI; Hsu JY; Huang YH; Tzeng SF; Tsai CL; Chen HH; Jou IM Spine (Phila Pa 1976); 2012 Jan; 37(1):10-7. PubMed ID: 22024901 [TBL] [Abstract][Full Text] [Related]
14. Role of ten-eleven translocation proteins and 5-hydroxymethylcytosine in hepatocellular carcinoma. Wang P; Yan Y; Yu W; Zhang H Cell Prolif; 2019 Jul; 52(4):e12626. PubMed ID: 31033072 [TBL] [Abstract][Full Text] [Related]
15. Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Carella A; Tejedor JR; García MG; Urdinguio RG; Bayón GF; Sierra M; López V; García-Toraño E; Santamarina-Ojeda P; Pérez RF; Bigot T; Mangas C; Corte-Torres MD; Sáenz-de-Santa-María I; Mollejo M; Meléndez B; Astudillo A; Chiara MD; Fernández AF; Fraga MF Int J Cancer; 2020 Jan; 146(2):373-387. PubMed ID: 31211412 [TBL] [Abstract][Full Text] [Related]
16. Longitudinal Optogenetic Motor Mapping Revealed Structural and Functional Impairments and Enhanced Corticorubral Projection after Contusive Spinal Cord Injury in Mice. Qian J; Wu W; Xiong W; Chai Z; Xu XM; Jin X J Neurotrauma; 2019 Feb; 36(3):485-499. PubMed ID: 29848155 [TBL] [Abstract][Full Text] [Related]
17. Ascorbic acid improves parthenogenetic embryo development through TET proteins in mice. Gao W; Yu X; Hao J; Wang L; Qi M; Han L; Lin C; Wang D Biosci Rep; 2019 Jan; 39(1):. PubMed ID: 30567727 [TBL] [Abstract][Full Text] [Related]
18. Retinol and ascorbate drive erasure of epigenetic memory and enhance reprogramming to naïve pluripotency by complementary mechanisms. Hore TA; von Meyenn F; Ravichandran M; Bachman M; Ficz G; Oxley D; Santos F; Balasubramanian S; Jurkowski TP; Reik W Proc Natl Acad Sci U S A; 2016 Oct; 113(43):12202-12207. PubMed ID: 27729528 [TBL] [Abstract][Full Text] [Related]
19. The effects of TETs on DNA methylation and hydroxymethylation of mouse oocytes after vitrification and warming. Fu L; Chang H; Wang Z; Xie X; Chen H; Lei Z; Zhang Y; Quan F Cryobiology; 2019 Oct; 90():41-46. PubMed ID: 31513810 [TBL] [Abstract][Full Text] [Related]
20. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration. Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]