BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32466296)

  • 1. TLR2 and Dectin-1 Signaling in Mouse Hematopoietic Stem and Progenitor Cells Impacts the Ability of the Antigen Presenting Cells They Produce to Activate CD4 T Cells.
    Martínez A; Bono C; Gozalbo D; Goodridge HS; Gil ML; Yáñez A
    Cells; 2020 May; 9(5):. PubMed ID: 32466296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dectin-1 Stimulation of Hematopoietic Stem and Progenitor Cells Occurs
    Bono C; Martínez A; Megías J; Gozalbo D; Yáñez A; Gil ML
    mBio; 2020 Jun; 11(3):. PubMed ID: 32576672
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce.
    Megías J; Martínez A; Yáñez A; Goodridge HS; Gozalbo D; Gil ML
    Microbes Infect; 2016 May; 18(5):354-63. PubMed ID: 26828664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic Candidiasis and TLR2 Agonist Exposure Impact the Antifungal Response of Hematopoietic Stem and Progenitor Cells.
    Martínez A; Bono C; Megías J; Yáñez A; Gozalbo D; Gil ML
    Front Cell Infect Microbiol; 2018; 8():309. PubMed ID: 30234030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of a TLR2 agonist by hematopoietic stem and progenitor cells impacts the function of the macrophages they produce.
    Yáñez A; Hassanzadeh-Kiabi N; Ng MY; Megías J; Subramanian A; Liu GY; Underhill DM; Gil ML; Goodridge HS
    Eur J Immunol; 2013 Aug; 43(8):2114-25. PubMed ID: 23661549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PRR signaling during in vitro macrophage differentiation from progenitors modulates their subsequent response to inflammatory stimuli.
    Martínez A; Bono C; Megías J; Yáñez A; Gozalbo D; Gil ML
    Eur Cytokine Netw; 2017 Sep; 28(3):102-110. PubMed ID: 29187337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance.
    Dillon S; Agrawal S; Banerjee K; Letterio J; Denning TL; Oswald-Richter K; Kasprowicz DJ; Kellar K; Pare J; van Dyke T; Ziegler S; Unutmaz D; Pulendran B
    J Clin Invest; 2006 Apr; 116(4):916-28. PubMed ID: 16543948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans stimulates in vivo differentiation of haematopoietic stem and progenitor cells towards macrophages by a TLR2-dependent signalling.
    Megías J; Maneu V; Salvador P; Gozalbo D; Gil ML
    Cell Microbiol; 2013 Jul; 15(7):1143-53. PubMed ID: 23279268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mast cells phagocyte Candida albicans and produce nitric oxide by mechanisms involving TLR2 and Dectin-1.
    Pinke KH; Lima HG; Cunha FQ; Lara VS
    Immunobiology; 2016 Feb; 221(2):220-7. PubMed ID: 26421959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNF-α production.
    Takahara K; Tokieda S; Nagaoka K; Inaba K
    Int Immunol; 2012 Feb; 24(2):89-96. PubMed ID: 22207132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of innate immune response through TLR2 and dectin 1 prevents type 1 diabetes.
    Karumuthil-Melethil S; Perez N; Li R; Vasu C
    J Immunol; 2008 Dec; 181(12):8323-34. PubMed ID: 19050249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TLR2- and Dectin 1-associated innate immune response modulates T-cell response to pancreatic β-cell antigen and prevents type 1 diabetes.
    Karumuthil-Melethil S; Sofi MH; Gudi R; Johnson BM; Perez N; Vasu C
    Diabetes; 2015 Apr; 64(4):1341-57. PubMed ID: 25377877
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Su H; Zhang Z; Liu Z; Peng B; Kong C; Wang H; Zhang Z; Xu Y
    J Biol Chem; 2018 Jun; 293(26):10287-10302. PubMed ID: 29739853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signaling through Toll-like receptor 3 and Dectin-1 potentiates the capability of human monocyte-derived dendritic cells to promote T-helper 1 and T-helper 17 immune responses.
    Dragicevic A; Dzopalic T; Vasilijic S; Vucevic D; Tomic S; Bozic B; Colic M
    Cytotherapy; 2012 May; 14(5):598-607. PubMed ID: 22424215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TLR2- and 4-independent immunomodulatory effect of high molecular weight components from Ascaris suum.
    Favoretto BC; Silva SR; Jacysyn JF; Câmara NO; Faquim-Mauro EL
    Mol Immunol; 2014 Mar; 58(1):17-26. PubMed ID: 24263181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Candida albicans induces selective development of macrophages and monocyte derived dendritic cells by a TLR2 dependent signalling.
    Yáñez A; Megías J; O'Connor JE; Gozalbo D; Gil ML
    PLoS One; 2011; 6(9):e24761. PubMed ID: 21935459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiolipin activates antigen-presenting cells via TLR2-PI3K-PKN1-AKT/p38-NF-kB signaling to prime antigen-specific naïve T cells in mice.
    Cho JA; Kim TJ; Moon HJ; Kim YJ; Yoon HK; Seong SY
    Eur J Immunol; 2018 May; 48(5):777-790. PubMed ID: 29313959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential requirements for Th1 and Th17 responses to a systemic self-antigen.
    Katzman SD; Gallo E; Hoyer KK; Abbas AK
    J Immunol; 2011 Apr; 186(8):4668-73. PubMed ID: 21402892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Barley beta-Glucan and Zymosan induce Dectin-1 and Toll-like receptor 2 co-localization and anti-leishmanial immune response in Leishmania donovani-infected BALB/c mice.
    Patidar A; Mahanty T; Raybarman C; Sarode AY; Basak S; Saha B; Bhattacharjee S
    Scand J Immunol; 2020 Dec; 92(6):e12952. PubMed ID: 32748397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TLR4, but Neither Dectin-1 nor Dectin-2, Participates in the Mollusk Hemocyanin-Induced Proinflammatory Effects in Antigen-Presenting Cells From Mammals.
    Jiménez JM; Salazar ML; Arancibia S; Villar J; Salazar F; Brown GD; Lavelle EC; Martínez-Pomares L; Ortiz-Quintero J; Lavandero S; Manubens A; Becker MI
    Front Immunol; 2019; 10():1136. PubMed ID: 31214162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.