These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 32466323)
1. Characterisation of Ex Vivo Liver Thermal Properties for Electromagnetic-Based Hyperthermic Therapies. Silva NP; Bottiglieri A; Conceição RC; O'Halloran M; Farina L Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466323 [TBL] [Abstract][Full Text] [Related]
2. Temperature dependence of thermal properties of ex vivo liver tissue up to ablative temperatures. Lopresto V; Argentieri A; Pinto R; Cavagnaro M Phys Med Biol; 2019 May; 64(10):105016. PubMed ID: 30952143 [TBL] [Abstract][Full Text] [Related]
3. Review of temperature dependence of thermal properties, dielectric properties, and perfusion of biological tissues at hyperthermic and ablation temperatures. Rossmann C; Haemmerich D Crit Rev Biomed Eng; 2014; 42(6):467-92. PubMed ID: 25955712 [TBL] [Abstract][Full Text] [Related]
4. Measurement of Ex Vivo Liver, Brain and Pancreas Thermal Properties as Function of Temperature. Mohammadi A; Bianchi L; Asadi S; Saccomandi P Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205567 [TBL] [Abstract][Full Text] [Related]
5. Histology-validated electromagnetic characterization of ex-vivo ovine lung tissue for microwave-based medical applications. Vidjak K; Farina L; Challapalli RS; Quinn AM; O'Halloran M; Lowery A; Ruvio G; Cavagnaro M Sci Rep; 2024 Mar; 14(1):5940. PubMed ID: 38467672 [TBL] [Abstract][Full Text] [Related]
6. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Bianchi L; Cavarzan F; Ciampitti L; Cremonesi M; Grilli F; Saccomandi P Int J Hyperthermia; 2022; 39(1):297-340. PubMed ID: 35129046 [TBL] [Abstract][Full Text] [Related]
7. Arrhenius relationships from the molecule and cell to the clinic. Dewey WC Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695 [TBL] [Abstract][Full Text] [Related]
8. Measurement of Thermal Conductivity and Thermal Diffusivity of Porcine and Bovine Kidney Tissues at Supraphysiological Temperatures up to 93 °C. Bianchi L; Fiorentini S; Gianella S; Gianotti S; Iadanza C; Asadi S; Saccomandi P Sensors (Basel); 2023 Aug; 23(15):. PubMed ID: 37571648 [TBL] [Abstract][Full Text] [Related]
9. Changes in dielectric properties of ex vivo bovine liver at 915 MHz during heating. Chin L; Sherar M Phys Med Biol; 2001 Jan; 46(1):197-211. PubMed ID: 11197672 [TBL] [Abstract][Full Text] [Related]
10. Dielectric Properties of Ex Vivo Porcine Liver Tissue Characterized at Frequencies Between 5 and 500 kHz When Heated at Different Rates. Deas Yero D; Gilart Gonzalez F; Van Troyen D; Vandenbosch GAE IEEE Trans Biomed Eng; 2018 Nov; 65(11):2560-2568. PubMed ID: 29993493 [TBL] [Abstract][Full Text] [Related]
11. Temperature-dependent thermal properties of ex vivo liver undergoing thermal ablation. Guntur SR; Lee KI; Paeng DG; Coleman AJ; Choi MJ Ultrasound Med Biol; 2013 Oct; 39(10):1771-84. PubMed ID: 23932271 [TBL] [Abstract][Full Text] [Related]
12. Numerical models to evaluate the temperature increase induced by ex vivo microwave thermal ablation. Cavagnaro M; Pinto R; Lopresto V Phys Med Biol; 2015 Apr; 60(8):3287-311. PubMed ID: 25826652 [TBL] [Abstract][Full Text] [Related]
13. Feasibility of ultrasound tomography-guided localized mild hyperthermia using a ring transducer: Ex vivo and in silico studies. Pattyn A; Kratkiewicz K; Alijabbari N; Carson PL; Littrup P; Fowlkes JB; Duric N; Mehrmohammadi M Med Phys; 2022 Sep; 49(9):6120-6136. PubMed ID: 35759729 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the Optical and Thermal Properties of Cardiac Tissue as a Function of Temperature. Bianchi L; Bossi A; Pifferi A; Saccomandi P Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083459 [TBL] [Abstract][Full Text] [Related]
15. Strong correlation between specific heat capacity and water content in human tissues suggests preferred heat deposition in malignant tumors upon electromagnetic irradiation. Vaupel P; Piazena H Int J Hyperthermia; 2022; 39(1):987-997. PubMed ID: 35876086 [TBL] [Abstract][Full Text] [Related]
16. Temperature Dependence of Thermal Properties of Ex Vivo Porcine Heart and Lung in Hyperthermia and Ablative Temperature Ranges. Bianchi L; Bontempi M; De Simone S; Franceschet M; Saccomandi P Ann Biomed Eng; 2023 Jun; 51(6):1181-1198. PubMed ID: 36656452 [TBL] [Abstract][Full Text] [Related]
17. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493 [TBL] [Abstract][Full Text] [Related]
18. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals. Caldwell JN; van den Heuvel AMJ; Kerry P; Clark MJ; Peoples GE; Taylor NAS Exp Physiol; 2018 Apr; 103(4):512-522. PubMed ID: 29345019 [TBL] [Abstract][Full Text] [Related]
19. Changes in dielectric properties at 460 kHz of kidney and fat during heating: importance for radio-frequency thermal therapy. Pop M; Molckovsky A; Chin L; Kolios MC; Jewett MA; Sherar MD Phys Med Biol; 2003 Aug; 48(15):2509-25. PubMed ID: 12953912 [TBL] [Abstract][Full Text] [Related]
20. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance. Holahan EV; Highfield DP; Holahan PK; Dewey WC Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]