These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32466327)

  • 1. Comment on the Article "A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection".
    Álvarez López Y; García Fernández M; Las-Heras Andrés F
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection.
    Šipoš D; Gleich D
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32326550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to Comments: A Lightweight and Low-Power UAV-Borne Ground Penetrating Radar Design for Landmine Detection.
    Šipoš D; Gleich D
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32466314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining Electromagnetic Spectroscopy and Ground-Penetrating Radar for the Detection of Anti-Personnel Landmines.
    A Marsh L; van Verre W; L Davidson J; Gao X; J W Podd F; J Daniels D; J Peyton A
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31382364
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR.
    Li J; Chen J; Wang P; Li C
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29439447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joint Fusion and Detection via Deep Learning in UAV-Borne Multispectral Sensing of Scatterable Landmine.
    Qiu Z; Guo H; Hu J; Jiang H; Luo C
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of a Drone Magnetometer System to Military Mine Detection in the Demilitarized Zone.
    Yoo LS; Lee JH; Lee YK; Jung SK; Choi Y
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34063580
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset.
    Yang CC; Bose NK
    IEEE Trans Neural Netw; 2005 May; 16(3):743-53. PubMed ID: 15941001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automotive Radar in a UAV to Assess Earth Surface Processes and Land Responses.
    Weber C; von Eichel-Streiber J; Rodrigo-Comino J; Altenburg J; Udelhoven T
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Radar Echo Simulator for the Synthesis of Randomized Training Data Sets in the Context of AI-Based Applications.
    Schorlemer J; Altholz J; Barowski J; Baer C; Rolfes I; Schulz C
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drone-Based 3D Synthetic Aperture Radar Imaging with Trajectory Optimization.
    Drozdowicz J; Samczynski P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Joint Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking of Unmanned Cluster based on Fuzzy Logic Reasoning.
    Zhang Y; Pan M; Han Q
    Sensors (Basel); 2020 Mar; 20(5):. PubMed ID: 32131501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Framework for Planning and Execution of Drone Swarm Missions in a Hostile Environment.
    Siemiatkowska B; Stecz W
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34204272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality evaluation of ground improvement by deep cement mixing piles via ground-penetrating radar.
    Shen H; Li X; Duan R; Zhao Y; Zhao J; Che H; Liu G; Xue Z; Yan C; Liu J; Jiang C; Li B; Chang H; Gao J; Yan Y
    Nat Commun; 2023 Jun; 14(1):3448. PubMed ID: 37301886
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAR System for UAV Operation with Motion Error Compensation beyond the Resolution Cell.
    González-Partida JT; Almorox-González P; Burgos-Garcia M; Dorta-Naranjo BP
    Sensors (Basel); 2008 May; 8(5):3384-3405. PubMed ID: 27879884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Back-Scattering and Multipath in a Suburban Area after the Calibration of an X-Band Commercial Radar.
    Galati G; Pavan G; Wasserzier C
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31947571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application and Algorithm of Ground-Penetrating Radar for Plant Root Detection: A Review.
    Liang H; Xing L; Lin J
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.
    Di Pasquale A; Nico G; Pitullo A; Prezioso G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29337884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of Eddy-Current and Radar Methods Used in Reinforcement Detection.
    Drobiec Ł; Jasiński R; Mazur W
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30974808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The utility of ground-penetrating radar and its time-dependence in the discovery of clandestine burials.
    Salsarola D; Poppa P; Amadasi A; Mazzarelli D; Gibelli D; Zanotti E; Porta D; Cattaneo C
    Forensic Sci Int; 2015 Aug; 253():119-24. PubMed ID: 26119388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.