These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 32466386)

  • 1. Real-Time PPP-RTK Performance Analysis Using Ionospheric Corrections from Multi-Scale Network Configurations.
    Psychas D; Verhagen S
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32466386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-GNSS PPP-RTK: From Large- to Small-Scale Networks.
    Nadarajah N; Khodabandeh A; Wang K; Choudhury M; Teunissen PJG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29614040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambiguity of Residual Constraint-Based Precise Point Positioning with Partial Ambiguity Resolution under No Real-Time Network Corrections Using Real Global Positioning System (GPS) Data.
    Qin H; Liu P; Cong L; Xue X
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tightly Coupled Integration of GPS Ambiguity Fixed Precise Point Positioning and MEMS-INS through a Troposphere-Constrained Adaptive Kalman Filter.
    Han H; Xu T; Wang J
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Centre National d'Études Spatiales Real-Time Ionosphere Maps in Instantaneous Precise Real-Time Kinematic Positioning over Medium and Long Baselines.
    Tomaszewski D; Wielgosz P; Rapiński J; Krypiak-Gregorczyk A; Kaźmierczak R; Hernández-Pajares M; Yang H; OrúsPérez R
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the convergence of ionospheric constrained precise point positioning (IC-PPP) based on undifferential uncombined raw GNSS observations.
    Zhang H; Gao Z; Ge M; Niu X; Huang L; Tu R; Li X
    Sensors (Basel); 2013 Nov; 13(11):15708-25. PubMed ID: 24253190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Satellite- and epoch differenced precise point positioning based on a regional augmentation network.
    Li H; Chen J; Wang J; Wu B
    Sensors (Basel); 2012; 12(6):7518-28. PubMed ID: 22969358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Global Ionospheric Map and Its Application in Single-Frequency Positioning.
    Zhang L; Yao Y; Peng W; Shan L; He Y; Kong J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30845733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Unified Model for BDS Wide Area and Local Area Augmentation Positioning Based on Raw Observations.
    Tu R; Zhang R; Lu C; Zhang P; Liu J; Lu X
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28273814
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving GNSS PPP Convergence: The Case of Atmospheric-Constrained, Multi-GNSS PPP-AR.
    Aggrey J; Bisnath S
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30704108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regiomontan: A Regional High Precision Ionosphere Delay Model and Its Application in Precise Point Positioning.
    Boisits J; Glaner M; Weber R
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Clock Parameterization and Its Implications for Precise Point Positioning and Ionosphere Estimation.
    Keshin M; Sato Y; Nakakuki K; Hirokawa R
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global Ionospheric Modelling using Multi-GNSS: BeiDou, Galileo, GLONASS and GPS.
    Ren X; Zhang X; Xie W; Zhang K; Yuan Y; Li X
    Sci Rep; 2016 Sep; 6():33499. PubMed ID: 27629988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smartphone Positioning and Accuracy Analysis Based on Real-Time Regional Ionospheric Correction Model.
    Liu Q; Gao C; Peng Z; Zhang R; Shang R
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Problem of Double-Filtering in PPP-RTK.
    Khodabandeh A; Teunissen PJG; Psychas D
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved PPP Ambiguity Resolution Considering the Stochastic Characteristics of Atmospheric Corrections from Regional Networks.
    Li Y; Li B; Gao Y
    Sensors (Basel); 2015 Nov; 15(12):29893-909. PubMed ID: 26633400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the Performance of Time-Relative GNSS Precise Positioning in Remote Areas.
    He K; Weng D; Ji S; Wang Z; Chen W; Lu Y; Nie Z
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A method of undifferenced ambiguity resolution for GPS+GLONASS precise point positioning.
    Yi W; Song W; Lou Y; Shi C; Yao Y
    Sci Rep; 2016 May; 6():26334. PubMed ID: 27222361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-Time Single Frequency Precise Point Positioning Using SBAS Corrections.
    Li L; Jia C; Zhao L; Cheng J; Liu J; Ding J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27517930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.