These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1985 related articles for article (PubMed ID: 32466638)

  • 1. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing Atomically Dispersed Metal Electrocatalysts for Hydrogen Evolution: Chemical Coordination Effect and Electronic Metal Support Interaction.
    Jiang S; Xue D; Zhang JN
    Chem Asian J; 2022 Jul; 17(14):e202200319. PubMed ID: 35570194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Earth-Abundant Transition-Metal-Based Bifunctional Electrocatalysts for Overall Water Splitting in Alkaline Media.
    Yu J; Le TA; Tran NQ; Lee H
    Chemistry; 2020 May; 26(29):6423-6436. PubMed ID: 32103541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Principles To Boost Reactivity in Gas-Involving Energy Electrocatalysis.
    Tang C; Wang HF; Zhang Q
    Acc Chem Res; 2018 Apr; 51(4):881-889. PubMed ID: 29384364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production from water electrolysis: role of catalysts.
    Wang S; Lu A; Zhong CJ
    Nano Converg; 2021 Feb; 8(1):4. PubMed ID: 33575919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Support and Interface Effects in Water-Splitting Electrocatalysts.
    Zhang J; Zhang Q; Feng X
    Adv Mater; 2019 Aug; 31(31):e1808167. PubMed ID: 30838688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Innovative Strategies for Electrocatalytic Water Splitting.
    You B; Sun Y
    Acc Chem Res; 2018 Jul; 51(7):1571-1580. PubMed ID: 29537825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Transition Metal Compounds as Electrocatalysts for Electrocatalytic Water Splitting.
    Yu Y; Wang T; Zhang Y; You J; Hu F; Zhang H
    Chem Rec; 2023 Nov; 23(11):e202300109. PubMed ID: 37489551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline Water Electrolysis for Green Hydrogen Production.
    Tüysüz H
    Acc Chem Res; 2024 Feb; 57(4):558-67. PubMed ID: 38335244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon Nanotube-Supported MoSe
    Najafi L; Bellani S; Oropesa-Nuñez R; Prato M; Martín-García B; Brescia R; Bonaccorso F
    ACS Nano; 2019 Mar; 13(3):3162-3176. PubMed ID: 30835996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Trends in Synthesis and Investigation of Nickel Phosphide Compound/Hybrid-Based Electrocatalysts Towards Hydrogen Generation from Water Electrocatalysis.
    Khalafallah D; Zhi M; Hong Z
    Top Curr Chem (Cham); 2019 Oct; 377(6):29. PubMed ID: 31605243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Perfect Imperfections in Electrocatalysts.
    Majee R; Parvin S; Arif Islam Q; Kumar A; Debnath B; Mondal S; Bhattacharjee S; Das S; Kumar A; Bhattacharyya S
    Chem Rec; 2022 Sep; 22(9):e202200070. PubMed ID: 35675947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing Electrocatalytic Water Splitting by Strain Engineering.
    You B; Tang MT; Tsai C; Abild-Pedersen F; Zheng X; Li H
    Adv Mater; 2019 Apr; 31(17):e1807001. PubMed ID: 30773741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From Atomic-Level Synthesis to Device-Scale Reactors: A Multiscale Approach to Water Electrolysis.
    Du X; Qi M; Wang Y
    Acc Chem Res; 2024 May; 57(9):1298-1309. PubMed ID: 38597422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating the electronic structure of CoMoO
    Jiao F; Li J; Wang J; Lin Y; Gong Y; Jing X
    Dalton Trans; 2020 Oct; 49(37):13152-13159. PubMed ID: 32935698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging transition metal and carbon nanomaterial hybrids as electrocatalysts for water splitting: a brief review.
    Muzammil A; Haider R; Wei W; Wan Y; Ishaq M; Zahid M; Yaseen W; Yuan X
    Mater Horiz; 2023 Jul; 10(8):2764-2799. PubMed ID: 37194395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic Modulation of Electrocatalytically Active Center of Cu
    Li Q; Wang X; Tang K; Wang M; Wang C; Yan C
    ACS Nano; 2017 Dec; 11(12):12230-12239. PubMed ID: 29178777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 100.