These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3246671)

  • 1. [Determination of age- and exercise-dependent changes in myoglobin contents in murine skeletal and cardiac muscles].
    Nakatani A
    Nihon Seirigaku Zasshi; 1988; 50(11):709-18. PubMed ID: 3246671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of increased training volume on the oxidative capacity, glycogen content and tension development of rat skeletal muscle.
    Kirwan JP; Costill DL; Flynn MG; Neufer PD; Fink WJ; Morse WM
    Int J Sports Med; 1990 Dec; 11(6):479-83. PubMed ID: 2286488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic exercise training improves Ca2+ handling and redox status of skeletal muscle in mice.
    Ferreira JC; Bacurau AV; Bueno CR; Cunha TC; Tanaka LY; Jardim MA; Ramires PR; Brum PC
    Exp Biol Med (Maywood); 2010 Apr; 235(4):497-505. PubMed ID: 20407082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle.
    Lehti TM; Silvennoinen M; Kivelä R; Kainulainen H; Komulainen J
    Am J Physiol Endocrinol Metab; 2007 Feb; 292(2):E533-42. PubMed ID: 17003243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise training in late middle-aged male Fischer 344 x Brown Norway F1-hybrid rats improves skeletal muscle aerobic function.
    Betik AC; Baker DJ; Krause DJ; McConkey MJ; Hepple RT
    Exp Physiol; 2008 Jul; 93(7):863-71. PubMed ID: 18356556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of ageing and physical training on rat skeletal muscle. An experimental study on the properties of collagen, laminin, and fibre types in muscles serving different functions.
    Kovanen V
    Acta Physiol Scand Suppl; 1989; 577():1-56. PubMed ID: 2922997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation.
    Bar-Shai M; Carmeli E; Ljubuncic P; Reznick AZ
    Free Radic Biol Med; 2008 Jan; 44(2):202-14. PubMed ID: 18191756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging skeletal muscle: response to exercise.
    Cartee GD
    Exerc Sport Sci Rev; 1994; 22():91-120. PubMed ID: 7925554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different adaptations of alpha-actinin isoforms to exercise training in rat skeletal muscles.
    Ogura Y; Naito H; Kakigi R; Akema T; Sugiura T; Katamoto S; Aoki J
    Acta Physiol (Oxf); 2009 Jul; 196(3):341-9. PubMed ID: 19040707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise training improves functional post-ischemic recovery in senescent heart.
    Le Page C; Noirez P; Courty J; Riou B; Swynghedauw B; Besse S
    Exp Gerontol; 2009 Mar; 44(3):177-82. PubMed ID: 18984034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of aerobic and anaerobic metabolism in cardiac and skeletal muscles from harp and hooded seals.
    Burns JM; Skomp N; Bishop N; Lestyk K; Hammill M
    J Exp Biol; 2010 Mar; 213(5):740-8. PubMed ID: 20154189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Skeletal muscle mitochondria and myoglobin, endurance, and intensity of training.
    Harms SJ; Hickson RC
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Mar; 54(3):798-802. PubMed ID: 6841226
    [No Abstract]   [Full Text] [Related]  

  • 13. Exercise training-induced alterations in skeletal muscle oxidative and antioxidant enzyme activity in senescent rats.
    Hammeren J; Powers S; Lawler J; Criswell D; Martin D; Lowenthal D; Pollock M
    Int J Sports Med; 1992 Jul; 13(5):412-6. PubMed ID: 1521960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.
    Pinho RA; Andrades ME; Oliveira MR; Pirola AC; Zago MS; Silveira PC; Dal-Pizzol F; Moreira JC
    Cell Biol Int; 2006 Oct; 30(10):848-53. PubMed ID: 17011801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology of immobilized skeletal muscle and the effects of a pre- and postimmobilization training program.
    Appell HJ
    Int J Sports Med; 1986 Feb; 7(1):6-12. PubMed ID: 3957520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short-term immobilization after eccentric exercise. Part II: creatine kinase and myoglobin.
    Sayers SP; Clarkson PM
    Med Sci Sports Exerc; 2003 May; 35(5):762-8. PubMed ID: 12750585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increase in myoglobin content and decrease in oxidative enzyme activities by leg muscle immobilization in man.
    Jansson E; Sylvén C; Arvidsson I; Eriksson E
    Acta Physiol Scand; 1988 Apr; 132(4):515-7. PubMed ID: 2976230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training.
    Hickson RC
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Sep; 51(3):746-9. PubMed ID: 6276338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzyme activity and myoglobin concentration in rat myocardium and skeletal muscles after passive intermittent simulated altitude exposure.
    Esteva S; Panisello P; Ramon Torrella J; Pages T; Viscor G
    J Sports Sci; 2009 Apr; 27(6):633-40. PubMed ID: 19308875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptation of myoglobin in compensatory hypertrophied rat muscle.
    Masuda K; Kano Y; Katsuta S
    Acta Physiol Scand; 1997 Aug; 160(4):327-31. PubMed ID: 9338513
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.