These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 32466777)

  • 1. A machine learning model that classifies breast cancer pathologic complete response on MRI post-neoadjuvant chemotherapy.
    Sutton EJ; Onishi N; Fehr DA; Dashevsky BZ; Sadinski M; Pinker K; Martinez DF; Brogi E; Braunstein L; Razavi P; El-Tamer M; Sacchini V; Deasy JO; Morris EA; Veeraraghavan H
    Breast Cancer Res; 2020 May; 22(1):57. PubMed ID: 32466777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method.
    Qu YH; Zhu HT; Cao K; Li XT; Ye M; Sun YS
    Thorac Cancer; 2020 Mar; 11(3):651-658. PubMed ID: 31944571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do MRI and mammography reliably identify candidates for breast conservation after neoadjuvant chemotherapy?
    Jochelson MS; Lampen-Sachar K; Gibbons G; Dang C; Lake D; Morris EA; Morrow M
    Ann Surg Oncol; 2015 May; 22(5):1490-5. PubMed ID: 25777093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Post Neoadjuvant Axillary Response Using a Novel Convolutional Neural Network Algorithm.
    Ha R; Chang P; Karcich J; Mutasa S; Van Sant EP; Connolly E; Chin C; Taback B; Liu MZ; Jambawalikar S
    Ann Surg Oncol; 2018 Oct; 25(10):3037-3043. PubMed ID: 29978368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do Calcifications Seen on Mammography After Neoadjuvant Chemotherapy for Breast Cancer Always Need to Be Excised?
    Feliciano Y; Mamtani A; Morrow M; Stempel MM; Patil S; Jochelson MS
    Ann Surg Oncol; 2017 Jun; 24(6):1492-1498. PubMed ID: 28058550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preoperative evaluation of residual tumor extent by three-dimensional magnetic resonance imaging in breast cancer patients treated with neoadjuvant chemotherapy.
    Akazawa K; Tamaki Y; Taguchi T; Tanji Y; Miyoshi Y; Kim SJ; Ueda S; Yanagisawa T; Sato Y; Tamura S; Noguchi S
    Breast J; 2006; 12(2):130-7. PubMed ID: 16509837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI staging after neoadjuvant chemotherapy for breast cancer: does tumor biology affect accuracy?
    McGuire KP; Toro-Burguete J; Dang H; Young J; Soran A; Zuley M; Bhargava R; Bonaventura M; Johnson R; Ahrendt G
    Ann Surg Oncol; 2011 Oct; 18(11):3149-54. PubMed ID: 21947592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of axillary response by monitoring with ultrasound and MRI during and after neoadjuvant chemotherapy in breast cancer patients.
    Eun NL; Son EJ; Gweon HM; Kim JA; Youk JH
    Eur Radiol; 2020 Mar; 30(3):1460-1469. PubMed ID: 31802216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive value of DCE-MRI for early evaluation of pathological complete response to neoadjuvant chemotherapy in resectable primary breast cancer: A single-center prospective study.
    Sun YS; He YJ; Li J; Li YL; Li XT; Lu AP; Fan ZQ; Cao K; Ouyang T
    Breast; 2016 Dec; 30():80-86. PubMed ID: 27652977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning.
    Moghadas-Dastjerdi H; Sha-E-Tallat HR; Sannachi L; Sadeghi-Naini A; Czarnota GJ
    Sci Rep; 2020 Jul; 10(1):10936. PubMed ID: 32616912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histopathologic correlation of residual mammographic microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer.
    Adrada BE; Huo L; Lane DL; Arribas EM; Resetkova E; Yang W
    Ann Surg Oncol; 2015 Apr; 22(4):1111-7. PubMed ID: 25287438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer.
    Bitencourt AGV; Gibbs P; Rossi Saccarelli C; Daimiel I; Lo Gullo R; Fox MJ; Thakur S; Pinker K; Morris EA; Morrow M; Jochelson MS
    EBioMedicine; 2020 Nov; 61():103042. PubMed ID: 33039708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predictive value of axillary nodal imaging by magnetic resonance imaging based on breast cancer subtype after neoadjuvant chemotherapy.
    Steiman J; Soran A; McAuliffe P; Diego E; Bonaventura M; Johnson R; Ahrendt G; McGuire K
    J Surg Res; 2016 Jul; 204(1):237-41. PubMed ID: 27451892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical patterns of care in patients with invasive breast cancer treated with neoadjuvant systemic therapy and breast magnetic resonance imaging: results of a secondary analysis of TBCRC 017.
    McGuire KP; Hwang ES; Cantor A; Golshan M; Meric-Bernstam F; Horton JK; Nanda R; Amos KD; Forero A; Hudis CA; Meszoely I; De Los Santos JF
    Ann Surg Oncol; 2015 Jan; 22(1):75-81. PubMed ID: 25059792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy.
    Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X
    Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiparametric MRI-based radiomics analysis for prediction of breast cancers insensitive to neoadjuvant chemotherapy.
    Xiong Q; Zhou X; Liu Z; Lei C; Yang C; Yang M; Zhang L; Zhu T; Zhuang X; Liang C; Liu Z; Tian J; Wang K
    Clin Transl Oncol; 2020 Jan; 22(1):50-59. PubMed ID: 30977048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multicenter Study of the Impact of Body Mass Index (BMI) on the incidence of Pathologic Complete Response (pCR) Among Saudi Patients with locally advanced Breast cancer (LABC) post Neoadjuvant Chemotherapy (NAC).
    Al-Saleh K; Abd El-Aziz N; Ali A; Abo Zeed W; Salah T; Elsamany S; Rasmy A; El Farargy O; Husain S; Al-Rikabi A; Alsaeed E; Aldiab A; Abd El-Warith A
    Gulf J Oncolog; 2019 May; 1(30):33-42. PubMed ID: 31242980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Machine Learning With Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients.
    Tahmassebi A; Wengert GJ; Helbich TH; Bago-Horvath Z; Alaei S; Bartsch R; Dubsky P; Baltzer P; Clauser P; Kapetas P; Morris EA; Meyer-Baese A; Pinker K
    Invest Radiol; 2019 Feb; 54(2):110-117. PubMed ID: 30358693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set.
    Cain EH; Saha A; Harowicz MR; Marks JR; Marcom PK; Mazurowski MA
    Breast Cancer Res Treat; 2019 Jan; 173(2):455-463. PubMed ID: 30328048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.