These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3246693)

  • 1. Interaction of contact velocity and cord compression in determining the severity of spinal cord injury.
    Kearney PA; Ridella SA; Viano DC; Anderson TE
    J Neurotrauma; 1988; 5(3):187-208. PubMed ID: 3246693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Changes of somatosensory and transcranial magnetic stimulation motor evoked potentials in experimental spinal cord injury].
    Hou Y; Nie L; Liu LH; Shao J; Yuan YJ
    Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(11):773-7. PubMed ID: 18683688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal cord contusion injury: experimental dissociation of hemorrhagic necrosis and subacute loss of axonal conduction.
    Anderson TE
    J Neurosurg; 1985 Jan; 62(1):115-9. PubMed ID: 3964842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A controlled pneumatic technique for experimental spinal cord contusion.
    Anderson TE
    J Neurosci Methods; 1982 Nov; 6(4):327-33. PubMed ID: 7154714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viscoelastic relaxation and regional blood flow response to spinal cord compression and decompression.
    Carlson GD; Warden KE; Barbeau JM; Bahniuk E; Kutina-Nelson KL; Biro CL; Bohlman HH; LaManna JC
    Spine (Phila Pa 1976); 1997 Jun; 22(12):1285-91. PubMed ID: 9201829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sustained spinal cord compression: part I: time-dependent effect on long-term pathophysiology.
    Carlson GD; Gorden CD; Oliff HS; Pillai JJ; LaManna JC
    J Bone Joint Surg Am; 2003 Jan; 85(1):86-94. PubMed ID: 12533577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Velocity and Duration of Residual Compression in a Rat Dislocation Spinal Cord Injury Model.
    Speidel J; Mattucci S; Liu J; Kwon BK; Tetzlaff W; Oxland TR
    J Neurotrauma; 2020 May; 37(9):1140-1148. PubMed ID: 31950856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spinal cord injury detection and monitoring using spectral coherence.
    Al-Nashash H; Fatoo NA; Mirza NN; Ahmed RI; Agrawal G; Thakor NV; All AH
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):1971-9. PubMed ID: 19362907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled cortical impact: a new experimental brain injury model.
    Lighthall JW
    J Neurotrauma; 1988; 5(1):1-15. PubMed ID: 3193461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a traumatic cervical dislocation spinal cord injury model with residual compression in the rat.
    Mattucci S; Speidel J; Liu J; Ramer MS; Kwon BK; Tetzlaff W; Oxland TR
    J Neurosci Methods; 2019 Jul; 322():58-70. PubMed ID: 30951755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spinal cord contusion in the rat: somatosensory evoked potentials as a function of graded injury.
    Raines A; Dretchen KL; Marx K; Wrathall JR
    J Neurotrauma; 1988; 5(2):151-60. PubMed ID: 3225858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different Time-Frequency Distribution Patterns of Somatosensory Evoked Potentials in Dual- and Single-Level Spinal Cord Compression.
    Cui H; Wang Y; Li G; Huang Y; Hu Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1052-1059. PubMed ID: 35417350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slope analysis of somatosensory evoked potentials in spinal cord injury for detecting contusion injury and focal demyelination.
    Agrawal G; Sherman D; Maybhate A; Gorelik M; Kerr DA; Thakor NV; All AH
    J Clin Neurosci; 2010 Sep; 17(9):1159-64. PubMed ID: 20538464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of spinal cord compression and traumatic force on the severity of cervical spinal cord injury associated with ossification of the posterior longitudinal ligament.
    Kawano O; Maeda T; Mori E; Yugue I; Takao T; Sakai H; Ueta T; Shiba K
    Spine (Phila Pa 1976); 2014 Jun; 39(14):1108-12. PubMed ID: 24732838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Somatosensory potentials in dogs with naturally acquired thoracolumbar spinal cord disease.
    Poncelet L; Michaux C; Balligand M
    Am J Vet Res; 1993 Nov; 54(11):1935-41. PubMed ID: 8291776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clip compression model is useful for thoracic spinal cord injuries: histologic and functional correlates.
    Poon PC; Gupta D; Shoichet MS; Tator CH
    Spine (Phila Pa 1976); 2007 Dec; 32(25):2853-9. PubMed ID: 18246008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical indicators of injury severity are decreased with increased thecal sac dimension in a bench-top model of contusion type spinal cord injury.
    Jones CF; Kwon BK; Cripton PA
    J Biomech; 2012 Apr; 45(6):1003-10. PubMed ID: 22349113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurological recovery is impaired by concurrent but not by asymptomatic pre-existing spinal cord compression after traumatic spinal cord injury.
    Kubota K; Saiwai H; Kumamaru H; Kobayakawa K; Maeda T; Matsumoto Y; Harimaya K; Iwamoto Y; Okada S
    Spine (Phila Pa 1976); 2012 Aug; 37(17):1448-55. PubMed ID: 22414995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-frequency patterns of somatosensory evoked potentials in predicting the location of spinal cord injury.
    Wang Y; Cui H; Pu J; Luk KD; Hu Y
    Neurosci Lett; 2015 Aug; 603():37-41. PubMed ID: 26170248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrathecal bupivacaine protects against extension of lesions in an acute photochemical spinal cord injury model.
    Lopez S; Privat A; Bernard N; Ohanna F; Vergnes C; Capdevila X
    Can J Anaesth; 2004 Apr; 51(4):364-72. PubMed ID: 15064266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.