These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 32467568)

  • 1. Reversal of the immunosuppressive tumor microenvironment by nanoparticle-based activation of immune-associated cells.
    Qi FL; Wang MF; Li BZ; Lu ZF; Nie GJ; Li SP
    Acta Pharmacol Sin; 2020 Jul; 41(7):895-901. PubMed ID: 32467568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle-Based Phototriggered Cancer Immunotherapy and Its Domino Effect in the Tumor Microenvironment.
    Rajendrakumar SK; Uthaman S; Cho CS; Park IK
    Biomacromolecules; 2018 Jun; 19(6):1869-1887. PubMed ID: 29677439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoparticles for tumor immunotherapy.
    Zang X; Zhao X; Hu H; Qiao M; Deng Y; Chen D
    Eur J Pharm Biopharm; 2017 Jun; 115():243-256. PubMed ID: 28323111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peptides that immunoactivate the tumor microenvironment.
    Furukawa N; Popel AS
    Biochim Biophys Acta Rev Cancer; 2021 Jan; 1875(1):188486. PubMed ID: 33276025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The interaction of NK cells and dendritic cells in the tumor environment: how to enforce NK cell & DC action under immunosuppressive conditions?
    Jacobs B; Ullrich E
    Curr Med Chem; 2012; 19(12):1771-9. PubMed ID: 22414086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential applications of nanoparticles for tumor microenvironment remodeling to ameliorate cancer immunotherapy.
    Bai Y; Wang Y; Zhang X; Fu J; Xing X; Wang C; Gao L; Liu Y; Shi L
    Int J Pharm; 2019 Oct; 570():118636. PubMed ID: 31446027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tumor-intrinsic signaling pathways: key roles in the regulation of the immunosuppressive tumor microenvironment.
    Yang L; Li A; Lei Q; Zhang Y
    J Hematol Oncol; 2019 Nov; 12(1):125. PubMed ID: 31775797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting and exploitation of tumor-associated neutrophils to enhance immunotherapy and drug delivery for cancer treatment.
    Zhang Y; Guoqiang L; Sun M; Lu X
    Cancer Biol Med; 2020 Feb; 17(1):32-43. PubMed ID: 32296575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoengineered Immune Niches for Reprogramming the Immunosuppressive Tumor Microenvironment and Enhancing Cancer Immunotherapy.
    Phuengkham H; Ren L; Shin IW; Lim YT
    Adv Mater; 2019 Aug; 31(34):e1803322. PubMed ID: 30773696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable Hydrogel as a Unique Platform for Antitumor Therapy Targeting Immunosuppressive Tumor Microenvironment.
    Liu Y; Geng Y; Yue B; Lo PC; Huang J; Jin H
    Front Immunol; 2021; 12():832942. PubMed ID: 35111169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent advances and challenges of repurposing nanoparticle-based drug delivery systems to enhance cancer immunotherapy.
    Lim S; Park J; Shim MK; Um W; Yoon HY; Ryu JH; Lim DK; Kim K
    Theranostics; 2019; 9(25):7906-7923. PubMed ID: 31695807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulating barriers of tumor microenvironment through nanocarrier systems for improved cancer immunotherapy: a review of current status and future perspective.
    Lan H; Zhang W; Jin K; Liu Y; Wang Z
    Drug Deliv; 2020 Dec; 27(1):1248-1262. PubMed ID: 32865029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cancer Immunotherapy with "Vascular-Immune" Crosstalk as Entry Point: Associated Mechanisms, Therapeutic Drugs and Nano-Delivery Systems.
    Jiang Z; Fang Z; Hong D; Wang X
    Int J Nanomedicine; 2024; 19():7383-7398. PubMed ID: 39050878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies.
    Liu Y; Guo J; Huang L
    Theranostics; 2020; 10(7):3099-3117. PubMed ID: 32194857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug Delivery for Cancer Immunotherapy and Vaccines.
    Batty CJ; Tiet P; Bachelder EM; Ainslie KM
    Pharm Nanotechnol; 2018; 6(4):232-244. PubMed ID: 30227827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoparticle-Mediated Remodeling of the Tumor Microenvironment to Enhance Immunotherapy.
    Musetti S; Huang L
    ACS Nano; 2018 Dec; 12(12):11740-11755. PubMed ID: 30508378
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acquired resistance to cancer immunotherapy: Role of tumor-mediated immunosuppression.
    Saleh R; Elkord E
    Semin Cancer Biol; 2020 Oct; 65():13-27. PubMed ID: 31362073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomicelle protects the immune activation effects of Paclitaxel and sensitizes tumors to anti-PD-1 Immunotherapy.
    Yang Q; Shi G; Chen X; Lin Y; Cheng L; Jiang Q; Yan X; Jiang M; Li Y; Zhang H; Wang H; Wang Y; Wang Q; Zhang Y; Liu Y; Su X; Dai L; Tang M; Li J; Zhang L; Qian Z; Yu D; Deng H
    Theranostics; 2020; 10(18):8382-8399. PubMed ID: 32724476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.