These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 32467568)

  • 21. Metabolic crosstalk in the tumor microenvironment regulates antitumor immunosuppression and immunotherapy resisitance.
    Wei F; Wang D; Wei J; Tang N; Tang L; Xiong F; Guo C; Zhou M; Li X; Li G; Xiong W; Zhang S; Zeng Z
    Cell Mol Life Sci; 2021 Jan; 78(1):173-193. PubMed ID: 32654036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immune suppression and reversal of the suppressive tumor microenvironment.
    Shimizu K; Iyoda T; Okada M; Yamasaki S; Fujii SI
    Int Immunol; 2018 Sep; 30(10):445-454. PubMed ID: 29939325
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combination of cancer immunotherapy with clinically available drugs that can block immunosuppressive cells.
    Kim SJ; Ha GH; Kim SH; Kang CD
    Immunol Invest; 2014; 43(6):517-34. PubMed ID: 24295450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Engineering nanomedicines through boosting immunogenic cell death for improved cancer immunotherapy.
    Gao J; Wang WQ; Pei Q; Lord MS; Yu HJ
    Acta Pharmacol Sin; 2020 Jul; 41(7):986-994. PubMed ID: 32317755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combination Cancer Immunotherapy of Nanoparticle-Based Immunogenic Cell Death Inducers and Immune Checkpoint Inhibitors.
    Qi J; Jin F; Xu X; Du Y
    Int J Nanomedicine; 2021; 16():1435-1456. PubMed ID: 33654395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Therapeutic Approaches Targeting the Natural Killer-Myeloid Cell Axis in the Tumor Microenvironment.
    Carnevalli LS; Ghadially H; Barry ST
    Front Immunol; 2021; 12():633685. PubMed ID: 33953710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine.
    Ohshio Y; Teramoto K; Hanaoka J; Tezuka N; Itoh Y; Asai T; Daigo Y; Ogasawara K
    Cancer Sci; 2015 Feb; 106(2):134-42. PubMed ID: 25483888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano-Enhanced Cancer Immunotherapy: Immunology Encounters Nanotechnology.
    Bockamp E; Rosigkeit S; Siegl D; Schuppan D
    Cells; 2020 Sep; 9(9):. PubMed ID: 32942725
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of cancer-immunity cycle and tumor microenvironment by nanobiomaterials to enhance tumor immunotherapy.
    Yang J; Zhang C
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2020 Jul; 12(4):e1612. PubMed ID: 32114718
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeting tumor-associated macrophages as an antitumor strategy.
    Cheng N; Bai X; Shu Y; Ahmad O; Shen P
    Biochem Pharmacol; 2021 Jan; 183():114354. PubMed ID: 33279498
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Advantages of targeting the tumor immune microenvironment over blocking immune checkpoint in cancer immunotherapy.
    Tang T; Huang X; Zhang G; Hong Z; Bai X; Liang T
    Signal Transduct Target Ther; 2021 Feb; 6(1):72. PubMed ID: 33608497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy.
    Krishnamoorthy M; Gerhardt L; Maleki Vareki S
    Cells; 2021 May; 10(5):. PubMed ID: 34065010
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer.
    Li K; Shi H; Zhang B; Ou X; Ma Q; Chen Y; Shu P; Li D; Wang Y
    Signal Transduct Target Ther; 2021 Oct; 6(1):362. PubMed ID: 34620838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel Granzyme B nanoparticle delivery system simulates immune cell functions for suppression of solid tumors.
    Qian X; Shi Z; Qi H; Zhao M; Huang K; Han D; Zhou J; Liu C; Liu Y; Lu Y; Yuan X; Zhao J; Kang C
    Theranostics; 2019; 9(25):7616-7627. PubMed ID: 31695790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoparticle-based strategies for cancer immunotherapy and immunodiagnostics.
    Grimaldi AM; Incoronato M; Salvatore M; Soricelli A
    Nanomedicine (Lond); 2017 Oct; 12(19):2349-2365. PubMed ID: 28868980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering Nanoparticles for Targeted Remodeling of the Tumor Microenvironment to Improve Cancer Immunotherapy.
    Gao S; Yang D; Fang Y; Lin X; Jin X; Wang Q; Wang X; Ke L; Shi K
    Theranostics; 2019; 9(1):126-151. PubMed ID: 30662558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting STAT3 in Cancer Immunotherapy.
    Zou S; Tong Q; Liu B; Huang W; Tian Y; Fu X
    Mol Cancer; 2020 Sep; 19(1):145. PubMed ID: 32972405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression.
    Zhang C; Yan Q; Li J; Zhu Y; Zhang Y
    ACS Appl Bio Mater; 2021 Jan; 4(1):277-294. PubMed ID: 35014284
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Non-viral gene delivery for cancer immunotherapy.
    Wang W; Saeed M; Zhou Y; Yang L; Wang D; Yu H
    J Gene Med; 2019 Jul; 21(7):e3092. PubMed ID: 30991453
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting galectins in T cell-based immunotherapy within tumor microenvironment.
    Jin QY; Li YS; Qiao XH; Yang JW; Guo XL
    Life Sci; 2021 Jul; 277():119426. PubMed ID: 33785342
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.