These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32467822)

  • 1. Naturally architected microstructures in structural materials via additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Addit Manuf; 2020 Aug; 34():. PubMed ID: 32467822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Characteristic Microstructures and Properties of Steel-Based Alloy via Additive Manufacturing.
    Shang C; Wu H; Pan G; Zhu J; Wang S; Wu G; Gao J; Liu Z; Li R; Mao X
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano/Micro-Manufacturing of Bioinspired Materials: a Review of Methods to Mimic Natural Structures.
    Zhang C; Mcadams DA; Grunlan JC
    Adv Mater; 2016 Aug; 28(30):6292-321. PubMed ID: 27144950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature-inspired materials and structures using 3D Printing.
    Bandyopadhyay A; Traxel KD; Bose S
    Mater Sci Eng R Rep; 2021 Jul; 145():. PubMed ID: 33986582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioinspired energy absorbing material designs using additive manufacturing.
    Ingrole A; Aguirre TG; Fuller L; Donahue SW
    J Mech Behav Biomed Mater; 2021 Jul; 119():104518. PubMed ID: 33882409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Architected Materials for Additive Manufacturing: A Comprehensive Review.
    Kladovasilakis N; Tsongas K; Karalekas D; Tzetzis D
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimally-Tailored Spinodal Architected Materials for Multiscale Design and Manufacturing.
    Senhora FV; Sanders ED; Paulino GH
    Adv Mater; 2022 Jul; 34(26):e2109304. PubMed ID: 35297113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of in situ ceramic reinforcement towards tailoring titanium matrix composites using laser-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Addit Manuf; 2020 Jan; 31():. PubMed ID: 32864348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of Additively Manufactured Polymeric Metamaterials: Design, Fabrication, Testing and Modeling.
    Almesmari A; Baghous N; Ejeh CJ; Barsoum I; Abu Al-Rub RK
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing high-temperature oxidation-resistant titanium matrix composites via directed energy deposition-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Mater Des; 2021 Dec; 212():. PubMed ID: 34898792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution.
    Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of Mechanical and Fracture Properties in Two-Phase Materials Reinforced by Continuous, Irregular Networks.
    Magrini T; Fox C; Wihardja A; Kolli A; Daraio C
    Adv Mater; 2024 Feb; 36(6):e2305198. PubMed ID: 37845747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diamond-reinforced cutting tools using laser-based additive manufacturing.
    Traxel KD; Bandyopadhyay A
    Addit Manuf; 2021 Jan; 37():. PubMed ID: 33718005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From microstructural design to surface engineering: A tailored approach for improving fatigue life of additively manufactured meta-biomaterials.
    Ahmadi SM; Kumar R; Borisov EV; Petrov R; Leeflang S; Li Y; Tümer N; Huizenga R; Ayas C; Zadpoor AA; Popovich VA
    Acta Biomater; 2019 Jan; 83():153-166. PubMed ID: 30389577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peritectic titanium alloys for 3D printing.
    Barriobero-Vila P; Gussone J; Stark A; Schell N; Haubrich J; Requena G
    Nat Commun; 2018 Aug; 9(1):3426. PubMed ID: 30143641
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extreme mechanical resilience of self-assembled nanolabyrinthine materials.
    Portela CM; Vidyasagar A; Krödel S; Weissenbach T; Yee DW; Greer JR; Kochmann DM
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):5686-5693. PubMed ID: 32132212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printing nature: Unraveling the role of nacre's mineral bridges.
    Gu GX; Libonati F; Wettermark SD; Buehler MJ
    J Mech Behav Biomed Mater; 2017 Dec; 76():135-144. PubMed ID: 28822737
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Mechanical Performance of Bio-Inspired Hybrid Structures Utilising Topological Interlocking Geometry.
    Djumas L; Molotnikov A; Simon GP; Estrin Y
    Sci Rep; 2016 May; 6():26706. PubMed ID: 27216277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nacre-inspired nanocomposites produced using layer-by-layer assembly: Design strategies and biomedical applications.
    Rodrigues JR; Alves NM; Mano JF
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1263-1273. PubMed ID: 28482494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.