BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 32467880)

  • 1. Macrophages enhance 3D invasion in a breast cancer cell line by induction of tumor cell tunneling nanotubes.
    Carter KP; Hanna S; Genna A; Lewis D; Segall JE; Cox D
    Cancer Rep (Hoboken); 2019 Dec; 2(6):e1213. PubMed ID: 32467880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunneling nanotubes, a novel mode of tumor cell-macrophage communication in tumor cell invasion.
    Hanna SJ; McCoy-Simandle K; Leung E; Genna A; Condeelis J; Cox D
    J Cell Sci; 2019 Feb; 132(3):. PubMed ID: 30659112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic Methods for Analysis of Macrophage-Induced Tunneling Nanotubes.
    Carter KP; Segall JE; Cox D
    Methods Mol Biol; 2020; 2108():273-279. PubMed ID: 31939188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments.
    Patheja P; Sahu K
    Exp Cell Res; 2017 Jun; 355(2):182-193. PubMed ID: 28412243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress-induced tunneling nanotubes support treatment adaptation in prostate cancer.
    Kretschmer A; Zhang F; Somasekharan SP; Tse C; Leachman L; Gleave A; Li B; Asmaro I; Huang T; Kotula L; Sorensen PH; Gleave ME
    Sci Rep; 2019 May; 9(1):7826. PubMed ID: 31127190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The growth determinants and transport properties of tunneling nanotube networks between B lymphocytes.
    Osteikoetxea-Molnár A; Szabó-Meleg E; Tóth EA; Oszvald Á; Izsépi E; Kremlitzka M; Biri B; Nyitray L; Bozó T; Németh P; Kellermayer M; Nyitrai M; Matko J
    Cell Mol Life Sci; 2016 Dec; 73(23):4531-4545. PubMed ID: 27125884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions.
    Ljubojevic N; Henderson JM; Zurzolo C
    Trends Cell Biol; 2021 Feb; 31(2):130-142. PubMed ID: 33309107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Centrosome, the Newly Identified Passenger through Tunneling Nanotubes, Increases Binucleation and Proliferation Marker in Receiving Cells.
    Dubois F; Galas L; Elie N; Le Foll F; Bazille C; Bergot E; Levallet G
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34575851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the media conditioned by various macrophage subtypes derived from THP-1 cells on tunneling nanotube formation in pancreatic cancer cells.
    Lee CW; Kuo CC; Liang CJ; Pan HJ; Shen CN; Lee CH
    BMC Mol Cell Biol; 2022 Jul; 23(1):26. PubMed ID: 35794526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunneling nanotubes: emerging view of their molecular components and formation mechanisms.
    Kimura S; Hase K; Ohno H
    Exp Cell Res; 2012 Aug; 318(14):1699-706. PubMed ID: 22652450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. M-Sec: Emerging secrets of tunneling nanotube formation.
    Ohno H; Hase K; Kimura S
    Commun Integr Biol; 2010 May; 3(3):231-3. PubMed ID: 20714400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunneling nanotube formation promotes survival against 5-fluorouracil in MCF-7 breast cancer cells.
    Kato K; Nguyen KT; Decker CW; Silkwood KH; Eck SM; Hernandez JB; Garcia J; Han D
    FEBS Open Bio; 2022 Jan; 12(1):203-210. PubMed ID: 34738322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protective Role of the M-Sec-Tunneling Nanotube System in Podocytes.
    Barutta F; Kimura S; Hase K; Bellini S; Corbetta B; Corbelli A; Fiordaliso F; Barreca A; Papotti MG; Ghiggeri GM; Salvidio G; Roccatello D; Audrito V; Deaglio S; Gambino R; Bruno S; Camussi G; Martini M; Hirsch E; Durazzo M; Ohno H; Gruden G
    J Am Soc Nephrol; 2021 May; 32(5):1114-1130. PubMed ID: 33722931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes.
    Delage E; Cervantes DC; Pénard E; Schmitt C; Syan S; Disanza A; Scita G; Zurzolo C
    Sci Rep; 2016 Dec; 6():39632. PubMed ID: 28008977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking.
    Sáenz-de-Santa-María I; Henderson JM; Pepe A; Zurzolo C
    Curr Protoc; 2023 Nov; 3(11):e939. PubMed ID: 37994667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatment with tumor-treating fields (TTFields) suppresses intercellular tunneling nanotube formation in vitro and upregulates immuno-oncologic biomarkers in vivo in malignant mesothelioma.
    Sarkari A; Korenfeld S; Deniz K; Ladner K; Wong P; Padmanabhan S; Vogel RI; Sherer LA; Courtemanche N; Steer C; Wainer-Katsir K; Lou E
    Elife; 2023 Nov; 12():. PubMed ID: 37955637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes.
    Wittig D; Wang X; Walter C; Gerdes HH; Funk RH; Roehlecke C
    PLoS One; 2012; 7(3):e33195. PubMed ID: 22457742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macrophages Promote Tumor Cell Extravasation across an Endothelial Barrier through Thin Membranous Connections.
    Genna A; Duran CL; Entenberg D; Condeelis JS; Cox D
    Cancers (Basel); 2023 Mar; 15(7):. PubMed ID: 37046751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunneling Nanotubes: A Versatile Target for Cancer Therapy.
    Sahu P; Jena SR; Samanta L
    Curr Cancer Drug Targets; 2018; 18(6):514-521. PubMed ID: 29189162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macrophage polarization impacts tunneling nanotube formation and intercellular organelle trafficking.
    Goodman S; Naphade S; Khan M; Sharma J; Cherqui S
    Sci Rep; 2019 Oct; 9(1):14529. PubMed ID: 31601865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.