BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 32467880)

  • 41. Tunneling nanotube (TNT) formation is downregulated by cytarabine and NF-κB inhibition in acute myeloid leukemia (AML).
    Omsland M; Bruserud Ø; Gjertsen BT; Andresen V
    Oncotarget; 2017 Jan; 8(5):7946-7963. PubMed ID: 27974700
    [TBL] [Abstract][Full Text] [Related]  

  • 42. MICAL2PV suppresses the formation of tunneling nanotubes and modulates mitochondrial trafficking.
    Wang F; Chen X; Cheng H; Song L; Liu J; Caplan S; Zhu L; Wu JY
    EMBO Rep; 2021 Jul; 22(7):e52006. PubMed ID: 34096155
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Phenotypic and Functional Alterations in Tunneling Nanotubes Formed by Glaucomatous Trabecular Meshwork Cells.
    Sun YY; Bradley JM; Keller KE
    Invest Ophthalmol Vis Sci; 2019 Nov; 60(14):4583-4595. PubMed ID: 31675075
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Lou E
    Front Oncol; 2020; 10():559548. PubMed ID: 33324545
    [TBL] [Abstract][Full Text] [Related]  

  • 45. GFAP serves as a structural element of tunneling nanotubes between glioblastoma cells and could play a role in the intercellular transfer of mitochondria.
    Simone L; Capobianco DL; Di Palma F; Binda E; Legnani FG; Vescovi AL; Svelto M; Pisani F
    Front Cell Dev Biol; 2023; 11():1221671. PubMed ID: 37886397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells.
    Wang X; Gerdes HH
    Cell Death Differ; 2015 Jul; 22(7):1181-91. PubMed ID: 25571977
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tunneling nanotubes: Diversity in morphology and structure.
    Austefjord MW; Gerdes HH; Wang X
    Commun Integr Biol; 2014 Jan; 7(1):e27934. PubMed ID: 24778759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes.
    Thayanithy V; Dickson EL; Steer C; Subramanian S; Lou E
    Transl Res; 2014 Nov; 164(5):359-65. PubMed ID: 24929208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes.
    Sáenz-de-Santa-María I; Bernardo-Castiñeira C; Enciso E; García-Moreno I; Chiara JL; Suarez C; Chiara MD
    Oncotarget; 2017 Mar; 8(13):20939-20960. PubMed ID: 28423494
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Direct Observation of Tunneling Nanotubes within Human Mesenchymal Stem Cell Spheroids.
    Zhang J; Whitehead J; Liu Y; Yang Q; Leach JK; Liu GY
    J Phys Chem B; 2018 Nov; 122(43):9920-9926. PubMed ID: 30350968
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tunneling nanotubes evoke pericyte/endothelial communication during normal and tumoral angiogenesis.
    Errede M; Mangieri D; Longo G; Girolamo F; de Trizio I; Vimercati A; Serio G; Frei K; Perris R; Virgintino D
    Fluids Barriers CNS; 2018 Oct; 15(1):28. PubMed ID: 30290761
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inhibition of Tunneling Nanotube (TNT) Formation and Human T-cell Leukemia Virus Type 1 (HTLV-1) Transmission by Cytarabine.
    Omsland M; Pise-Masison C; Fujikawa D; Galli V; Fenizia C; Parks RW; Gjertsen BT; Franchini G; Andresen V
    Sci Rep; 2018 Jul; 8(1):11118. PubMed ID: 30042514
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tunneling nanotube formation is essential for the regulation of osteoclastogenesis.
    Takahashi A; Kukita A; Li YJ; Zhang JQ; Nomiyama H; Yamaza T; Ayukawa Y; Koyano K; Kukita T
    J Cell Biochem; 2013 Jun; 114(6):1238-47. PubMed ID: 23129562
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Jahnke R; Matthiesen S; Zaeck LM; Finke S; Knittler MR
    Microbiol Spectr; 2022 Dec; 10(6):e0281722. PubMed ID: 36219107
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structural and functional analysis of tunneling nanotubes (TnTs) using gCW STED and gconfocal approaches.
    Bénard M; Schapman D; Lebon A; Monterroso B; Bellenger M; Le Foll F; Pasquier J; Vaudry H; Vaudry D; Galas L
    Biol Cell; 2015 Nov; 107(11):419-25. PubMed ID: 26094971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control.
    Dubois F; Jean-Jacques B; Roberge H; Bénard M; Galas L; Schapman D; Elie N; Goux D; Keller M; Maille E; Bergot E; Zalcman G; Levallet G
    Cell Commun Signal; 2018 Oct; 16(1):66. PubMed ID: 30305100
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lost in translation: applying 2D intercellular communication via tunneling nanotubes in cell culture to physiologically relevant 3D microenvironments.
    Lou E; O'Hare P; Subramanian S; Steer CJ
    FEBS J; 2017 Mar; 284(5):699-707. PubMed ID: 27801976
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemotherapy-Induced Tunneling Nanotubes Mediate Intercellular Drug Efflux in Pancreatic Cancer.
    Desir S; O'Hare P; Vogel RI; Sperduto W; Sarkari A; Dickson EL; Wong P; Nelson AC; Fong Y; Steer CJ; Subramanian S; Lou E
    Sci Rep; 2018 Jun; 8(1):9484. PubMed ID: 29930346
    [TBL] [Abstract][Full Text] [Related]  

  • 59. ECM stiffness-regulated exosomal thrombospondin-1 promotes tunneling nanotubes-based cellular networking in breast cancer cells.
    Mahadik P; Patwardhan S
    Arch Biochem Biophys; 2023 Jul; 742():109624. PubMed ID: 37146866
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mycoplasma exploits mammalian tunneling nanotubes for cell-to-cell dissemination.
    Kim BW; Lee JS; Ko YG
    BMB Rep; 2019 Aug; 52(8):490-495. PubMed ID: 30673584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.