BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 32468344)

  • 1. Polydopamine coated copper nanoclusters with aggregation-induced emission for fluorometric determination of phosphate ion and acid phosphatase activity.
    Du Q; Zhang X; Cao H; Huang Y
    Mikrochim Acta; 2020 May; 187(6):357. PubMed ID: 32468344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kojic acid capped gold nanoclusters with aggregation-induced emission for fluorometric screening of the activity of alkaline phosphatase.
    Li Y; Du Q; Zhang X; Cao H; Huang Y
    Mikrochim Acta; 2019 Jul; 186(8):577. PubMed ID: 31346718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA-templated copper nanoclusters as a fluorescent probe for fluoride by using aluminum ions as a bridge.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Hao Z; Liu Y
    Mikrochim Acta; 2019 May; 186(6):364. PubMed ID: 31104105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme.
    Xue Q; Cao X; Zhang C; Xian Y
    Mikrochim Acta; 2018 Mar; 185(4):231. PubMed ID: 29594735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adjustable luminescence copper nanoclusters nanoswitch based on competitive coordination of samarium ions for cascade detection of adenosine triphosphate and acid phosphatase activity.
    Huang X; Chen H; Huang R; Shi Y; Ye R; Qiu B
    Mikrochim Acta; 2023 Dec; 191(1):54. PubMed ID: 38151694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Luminescent Aggregated Copper Nanoclusters Nanoswitch Controlled by Hydrophobic Interaction for Real-Time Monitoring of Acid Phosphatase Activity.
    Huang Y; Feng H; Liu W; Zhou Y; Tang C; Ao H; Zhao M; Chen G; Chen J; Qian Z
    Anal Chem; 2016 Dec; 88(23):11575-11583. PubMed ID: 27796092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent and visual assay of H
    Mei H; Ma Y; Wu H; Wang X
    Anal Bioanal Chem; 2021 Mar; 413(8):2135-2146. PubMed ID: 33511458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper nanoclusters capped with tannic acid as a fluorescent probe for real-time determination of the activity of pyrophosphatase.
    Liu Q; Lai Q; Li N; Su X
    Mikrochim Acta; 2018 Feb; 185(3):182. PubMed ID: 29594686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the activity of alkaline phosphatase based on aggregation-induced quenching of the fluorescence of copper nanoclusters.
    Hu Y; He Y; Han Y; Ge Y; Song G; Zhou J
    Mikrochim Acta; 2018 Dec; 186(1):5. PubMed ID: 30535645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutathione-stabilized copper nanoclusters mediated-inner filter effect for sensitive and selective determination of p-nitrophenol and alkaline phosphatase activity.
    Wang HB; Tao BB; Wu NN; Zhang HD; Liu YM
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Apr; 271():120948. PubMed ID: 35104744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper nanoclusters as probes for turn-on fluorescence sensing of L-lysine.
    Zhang M; Qiao J; Zhang S; Qi L
    Talanta; 2018 May; 182():595-599. PubMed ID: 29501198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the activity of T4 polynucleotide kinase phosphatase by exploiting the sequence-dependent fluorescence of DNA-templated copper nanoclusters.
    Zhang X; Liu Q; Jin Y; Li B
    Mikrochim Acta; 2018 Dec; 186(1):3. PubMed ID: 30519789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of silver through amplified quenching of fluorescence from polyvinyl pyrrolidone-stabilized copper nanoclusters.
    Yang D; Zhou T; Tu Y; Yan J
    Mikrochim Acta; 2021 May; 188(6):212. PubMed ID: 34052959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating detection of dissolved ferrous and ferric ions using copper nanocluster-based fluorescent probe.
    Zhang Z; Xue W; Yang J; Zhao Y; Guo J
    Anal Biochem; 2021 Jun; 623():114171. PubMed ID: 33775668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination.
    Wang M; Wang S; Su D; Su X
    Anal Chim Acta; 2018 Dec; 1035():184-191. PubMed ID: 30224138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-strand DNA-scaffolded copper nanoclusters for the determination of inorganic pyrophosphatase activity and screening of its inhibitor.
    Pang J; Lu Y; Gao X; He L; Sun J; Yang F; Liu Y
    Mikrochim Acta; 2020 Nov; 187(12):672. PubMed ID: 33225389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper nanoclusters: an efficient fluorescence sensing platform for quinoline yellow.
    Sivasankaran U; Radecki J; Radecka H; Girish Kumar K
    Luminescence; 2019 Mar; 34(2):243-248. PubMed ID: 30746849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the activity of alkaline phosphatase by using nanoclusters composed of flower-like cobalt oxyhydroxide and copper nanoclusters as fluorescent probes.
    Wang HB; Li Y; Chen Y; Zhang ZP; Gan T; Liu YM
    Mikrochim Acta; 2018 Jan; 185(2):102. PubMed ID: 29594450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-emission copper nanoclusters-based ratiometric fluorescent probe for intracellular detection of hydroxyl and superoxide anion species.
    Garima ; Jindal S; Garg S; Matai I; Packirisamy G; Sachdev A
    Mikrochim Acta; 2021 Jan; 188(1):13. PubMed ID: 33389152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper nanoclusters@Al
    Qu F; Wang B; Li K; You J; Han W
    Mikrochim Acta; 2020 Jul; 187(8):457. PubMed ID: 32683631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.