These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 32468715)
1. Cathode Architectures for Rechargeable Ion Batteries: Progress and Perspectives. Ni J; Li L Adv Mater; 2020 Jul; 32(28):e2000288. PubMed ID: 32468715 [TBL] [Abstract][Full Text] [Related]
2. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
3. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923 [TBL] [Abstract][Full Text] [Related]
4. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes. Wei TS; Ahn BY; Grotto J; Lewis JA Adv Mater; 2018 Apr; 30(16):e1703027. PubMed ID: 29543991 [TBL] [Abstract][Full Text] [Related]
5. Advances in the Cathode Materials for Lithium Rechargeable Batteries. Lee W; Muhammad S; Sergey C; Lee H; Yoon J; Kang YM; Yoon WS Angew Chem Int Ed Engl; 2020 Feb; 59(7):2578-2605. PubMed ID: 31034134 [TBL] [Abstract][Full Text] [Related]
6. Commercialization-Driven Electrodes Design for Lithium Batteries: Basic Guidance, Opportunities, and Perspectives. Cao C; Liang F; Zhang W; Liu H; Liu H; Zhang H; Mao J; Zhang Y; Feng Y; Yao X; Ge M; Tang Y Small; 2021 Oct; 17(43):e2102233. PubMed ID: 34350695 [TBL] [Abstract][Full Text] [Related]
7. Tortuosity Engineering for Improved Charge Storage Kinetics in High-Areal-Capacity Battery Electrodes. Ju Z; Zhang X; Wu J; King ST; Chang CC; Yan S; Xue Y; Takeuchi KJ; Marschilok AC; Wang L; Takeuchi ES; Yu G Nano Lett; 2022 Aug; 22(16):6700-6708. PubMed ID: 35921591 [TBL] [Abstract][Full Text] [Related]
8. Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. Wang B; Ryu J; Choi S; Song G; Hong D; Hwang C; Chen X; Wang B; Li W; Song HK; Park S; Ruoff RS ACS Nano; 2018 Feb; 12(2):1739-1746. PubMed ID: 29350526 [TBL] [Abstract][Full Text] [Related]
9. Conformal coating of thin polymer electrolyte layer on nanostructured electrode materials for three-dimensional battery applications. Gowda SR; Reddy AL; Shaijumon MM; Zhan X; Ci L; Ajayan PM Nano Lett; 2011 Jan; 11(1):101-6. PubMed ID: 21133387 [TBL] [Abstract][Full Text] [Related]
10. Toward High Areal Energy and Power Density Electrode for Li-Ion Batteries via Optimized 3D Printing Approach. Wang J; Sun Q; Gao X; Wang C; Li W; Holness FB; Zheng M; Li R; Price AD; Sun X; Sham TK; Sun X ACS Appl Mater Interfaces; 2018 Nov; 10(46):39794-39801. PubMed ID: 30372018 [TBL] [Abstract][Full Text] [Related]
11. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries. Fang X; Peng H Small; 2015 Apr; 11(13):1488-511. PubMed ID: 25510342 [TBL] [Abstract][Full Text] [Related]
12. Nano Polymorphism-Enabled Redox Electrodes for Rechargeable Batteries. Mei J; Wang J; Gu H; Du Y; Wang H; Yamauchi Y; Liao T; Sun Z; Yin Z Adv Mater; 2021 Feb; 33(8):e2004920. PubMed ID: 33382163 [TBL] [Abstract][Full Text] [Related]
13. Amorphous and Crystalline Vanadium Oxides as High-Energy and High-Power Cathodes for Three-Dimensional Thin-Film Lithium Ion Batteries. Mattelaer F; Geryl K; Rampelberg G; Dendooven J; Detavernier C ACS Appl Mater Interfaces; 2017 Apr; 9(15):13121-13131. PubMed ID: 28362478 [TBL] [Abstract][Full Text] [Related]
14. Low-Temperature High-Areal-Capacity Rechargeable Potassium-Metal Batteries. Chen J; Yu D; Zhu Q; Liu X; Wang J; Chen W; Ji R; Qiu K; Guo L; Wang H Adv Mater; 2022 Sep; 34(36):e2205678. PubMed ID: 35853459 [TBL] [Abstract][Full Text] [Related]
15. Recent Advances toward the Rational Design of Efficient Bifunctional Air Electrodes for Rechargeable Zn-Air Batteries. Meng FL; Liu KH; Zhang Y; Shi MM; Zhang XB; Yan JM; Jiang Q Small; 2018 Aug; 14(32):e1703843. PubMed ID: 30003667 [TBL] [Abstract][Full Text] [Related]
16. Binder-Free V Diem AM; Fenk B; Bill J; Burghard Z Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197 [TBL] [Abstract][Full Text] [Related]
17. Electrode Architecture Design to Promote Charge-Transport Kinetics in High-Loading and High-Energy Lithium-Based Batteries. Ji W; Qu H; Zhang X; Zheng D; Qu D Small Methods; 2021 Oct; 5(10):e2100518. PubMed ID: 34927941 [TBL] [Abstract][Full Text] [Related]
18. Electrolyte stability determines scaling limits for solid-state 3D Li ion batteries. Ruzmetov D; Oleshko VP; Haney PM; Lezec HJ; Karki K; Baloch KH; Agrawal AK; Davydov AV; Krylyuk S; Liu Y; Huang J; Tanase M; Cumings J; Talin AA Nano Lett; 2012 Jan; 12(1):505-11. PubMed ID: 22185512 [TBL] [Abstract][Full Text] [Related]
19. Rechargeable magnesium-ion battery based on a TiSe2-cathode with d-p orbital hybridized electronic structure. Gu Y; Katsura Y; Yoshino T; Takagi H; Taniguchi K Sci Rep; 2015 Jul; 5():12486. PubMed ID: 26228263 [TBL] [Abstract][Full Text] [Related]