These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 32469063)

  • 21. mmCSM-NA: accurately predicting effects of single and multiple mutations on protein-nucleic acid binding affinity.
    Nguyen TB; Myung Y; de Sá AGC; Pires DEV; Ascher DB
    NAR Genom Bioinform; 2021 Dec; 3(4):lqab109. PubMed ID: 34805992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding and predicting the functional consequences of missense mutations in BRCA1 and BRCA2.
    Aljarf R; Shen M; Pires DEV; Ascher DB
    Sci Rep; 2022 Jun; 12(1):10458. PubMed ID: 35729312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of disease-associated mutations in the transmembrane regions of proteins with known 3D structure.
    Popov P; Bizin I; Gromiha M; A K; Frishman D
    PLoS One; 2019; 14(7):e0219452. PubMed ID: 31291347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CSM-Potential: mapping protein interactions and biological ligands in 3D space using geometric deep learning.
    Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2022 Jul; 50(W1):W204-W209. PubMed ID: 35609999
    [TBL] [Abstract][Full Text] [Related]  

  • 25. pdCSM-PPI: Using Graph-Based Signatures to Identify Protein-Protein Interaction Inhibitors.
    Rodrigues CHM; Pires DEV; Ascher DB
    J Chem Inf Model; 2021 Nov; 61(11):5438-5445. PubMed ID: 34719929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. kinCSM: Using graph-based signatures to predict small molecule CDK2 inhibitors.
    Zhou Y; Al-Jarf R; Alavi A; Nguyen TB; Rodrigues CHM; Pires DEV; Ascher DB
    Protein Sci; 2022 Nov; 31(11):e4453. PubMed ID: 36305769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CSM-AB: graph-based antibody-antigen binding affinity prediction and docking scoring function.
    Myung Y; Pires DEV; Ascher DB
    Bioinformatics; 2022 Jan; 38(4):1141-1143. PubMed ID: 34734992
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pred-MutHTP: Prediction of disease-causing and neutral mutations in human transmembrane proteins.
    Kulandaisamy A; Zaucha J; Sakthivel R; Frishman D; Michael Gromiha M
    Hum Mutat; 2020 Mar; 41(3):581-590. PubMed ID: 31821684
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using Graph-Based Signatures to Guide Rational Antibody Engineering.
    Ascher DB; Kaminskas LM; Myung Y; Pires DEV
    Methods Mol Biol; 2023; 2552():375-397. PubMed ID: 36346604
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DDMut-PPI: predicting effects of mutations on protein-protein interactions using graph-based deep learning.
    Zhou Y; Myung Y; Rodrigues CHM; Ascher DB
    Nucleic Acids Res; 2024 Jul; 52(W1):W207-W214. PubMed ID: 38783112
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality.
    Dehouck Y; Kwasigroch JM; Gilis D; Rooman M
    BMC Bioinformatics; 2011 May; 12():151. PubMed ID: 21569468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. pdCSM-GPCR: predicting potent GPCR ligands with graph-based signatures.
    Velloso JPL; Ascher DB; Pires DEV
    Bioinform Adv; 2021; 1(1):vbab031. PubMed ID: 34901870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. MutTMPredictor: Robust and accurate cascade XGBoost classifier for prediction of mutations in transmembrane proteins.
    Ge F; Zhu YH; Xu J; Muhammad A; Song J; Yu DJ
    Comput Struct Biotechnol J; 2021; 19():6400-6416. PubMed ID: 34938415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.
    Tsirigos KD; Peters C; Shu N; Käll L; Elofsson A
    Nucleic Acids Res; 2015 Jul; 43(W1):W401-7. PubMed ID: 25969446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutations in transmembrane proteins: diseases, evolutionary insights, prediction and comparison with globular proteins.
    Zaucha J; Heinzinger M; Kulandaisamy A; Kataka E; Salvádor ÓL; Popov P; Rost B; Gromiha MM; Zhorov BS; Frishman D
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32672331
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure-guided machine learning prediction of drug resistance mutations in Abelson 1 kinase.
    Zhou Y; Portelli S; Pat M; Rodrigues CHM; Nguyen TB; Pires DEV; Ascher DB
    Comput Struct Biotechnol J; 2021; 19():5381-5391. PubMed ID: 34667533
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SAAFEC-SEQ: A Sequence-Based Method for Predicting the Effect of Single Point Mutations on Protein Thermodynamic Stability.
    Li G; Panday SK; Alexov E
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33435356
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iMem-Seq: A Multi-label Learning Classifier for Predicting Membrane Proteins Types.
    Xiao X; Zou HL; Lin WZ
    J Membr Biol; 2015 Aug; 248(4):745-52. PubMed ID: 25796484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels.
    Waldispühl J; Berger B; Clote P; Steyaert JM
    Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W189-93. PubMed ID: 16844989
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TMSNP: a web server to predict pathogenesis of missense mutations in the transmembrane region of membrane proteins.
    Garcia-Recio A; Gómez-Tamayo JC; Reina I; Campillo M; Cordomí A; Olivella M
    NAR Genom Bioinform; 2021 Mar; 3(1):lqab008. PubMed ID: 33655207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.