These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 32469159)

  • 21. The Influence of Neem Oil and Its Glyceride on the Structure and Characterization of Castor Oil-Based Polyurethane Foam.
    Liao YH; Su YL; Chen YC
    Polymers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circular Reprocessing of Thermoset Polyurethane Foams.
    Kim S; Li K; Alsbaiee A; Brutman JP; Dichtel WR
    Adv Mater; 2023 Oct; 35(41):e2305387. PubMed ID: 37548061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradative Activities of Selected Environmental Fungi on a Polyester Polyurethane Varnish and Polyether Polyurethane Foams.
    Álvarez-Barragán J; Domínguez-Malfavón L; Vargas-Suárez M; González-Hernández R; Aguilar-Osorio G; Loza-Tavera H
    Appl Environ Microbiol; 2016 Sep; 82(17):5225-35. PubMed ID: 27316963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flexible Polyurethane Foams Modified with Novel Coconut Monoglycerides-Based Polyester Polyols.
    Omisol CJM; Aguinid BJM; Abilay GY; Asequia DM; Tomon TR; Sabulbero KX; Erjeno DJ; Osorio CK; Usop S; Malaluan R; Dumancas G; Resurreccion EP; Lubguban A; Apostol G; Siy H; Alguno AC; Lubguban A
    ACS Omega; 2024 Jan; 9(4):4497-4512. PubMed ID: 38313545
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation of polyether-polyurethane foam in yellow mealworms (Tenebrio molitor) and effects on the gut microbiome.
    Liu J; Liu J; Xu B; Xu A; Cao S; Wei R; Zhou J; Jiang M; Dong W
    Chemosphere; 2022 Oct; 304():135263. PubMed ID: 35697110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of Bio-Based Polyol from Coconut Fatty Acid Distillate (CFAD) and Crude Glycerol for Rigid Polyurethane Foam Applications.
    Salcedo MLD; Omisol CJM; Maputi AO; Estrada DJE; Aguinid BJM; Asequia DMA; Erjeno DJD; Apostol G; Siy H; Malaluan RM; Alguno AC; Dumancas GG; Lubguban AA
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling of Flexible Polyurethane Foams by Regrinding Scraps into Powder to Replace Polyol for Re-Foaming.
    Guo L; Wang W; Guo X; Hao K; Liu H; Xu Y; Liu G; Guo S; Bai L; Ren D; Liu F
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of End-Group Functionality of Propylene Oxide-Based Polyether Polyols Recovered from Polyurethane Foams by Chemical Recycling.
    Zdovc B; Grdadolnik M; Pahovnik D; Žagar E
    Macromolecules; 2023 May; 56(9):3374-3382. PubMed ID: 37181246
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-evolutionary recycling of flame-retardant polyurethane foam enabled by controllable catalytic cleavage.
    Fang DX; Chen MJ; Zeng FR; Guo SQ; He L; Liu BW; Huang SC; Zhao HB; Wang YZ
    Mater Horiz; 2024 May; ():. PubMed ID: 38742392
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of rigid polyurethane foams from phosphorylated biopolyols.
    de Haro JC; López-Pedrajas D; Pérez Á; Rodríguez JF; Carmona M
    Environ Sci Pollut Res Int; 2019 Feb; 26(4):3174-3183. PubMed ID: 28822032
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of a Mixture of Polyols Based on Metasilicic Acid and Recycled PLA for Synthesis of Rigid Polyurethane Foams Susceptible to Biodegradation.
    Paciorek-Sadowska J; Borowicz M; Chmiel E; Lubczak J
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374754
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polyurethane Composites Recycling with Styrene-Acrylonitrile and Calcium Carbonate Recovery.
    Del Amo J; Iswar S; Vanbergen T; Borreguero AM; De Vos SDE; Verlent I; Willems J; Rodriguez Romero JF
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930213
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Studying the Suitability of Nineteen Lignins as Partial Polyol Replacement in Rigid Polyurethane/Polyisocyanurate Foam.
    Henry C; Gondaliya A; Thies M; Nejad M
    Molecules; 2022 Apr; 27(8):. PubMed ID: 35458731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Green Recycling Process for Polyurethane Foams by a Chem-Biotech Approach.
    Magnin A; Entzmann L; Bazin A; Pollet E; Avérous L
    ChemSusChem; 2021 Oct; 14(19):4234-4241. PubMed ID: 33629810
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A study on coconut fatty acid diethanolamide-based polyurethane foams.
    Leng X; Li C; Cai X; Yang Z; Zhang F; Liu Y; Yang G; Wang Q; Fang G; Zhang X
    RSC Adv; 2022 Apr; 12(21):13548-13556. PubMed ID: 35527733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasonication assisted preparation of carbonaceous nanoparticles modified polyurethane foam with good conductivity and high oil absorption properties.
    Shi H; Shi D; Yin L; Yang Z; Luan S; Gao J; Zha J; Yin J; Li RK
    Nanoscale; 2014 Nov; 6(22):13748-53. PubMed ID: 25285907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of amine and polyol functionality in extracts of polyurethane wound management dressings using MALDI-MS.
    Ostah N; Lawson G; Zafar S; Harrington G; Hicks J
    Analyst; 2000 Jan; 125(1):111-4. PubMed ID: 10885068
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Breakthrough in polyurethane bio-recycling: An efficient laccase-mediated system for the degradation of different types of polyurethanes.
    Magnin A; Entzmann L; Pollet E; Avérous L
    Waste Manag; 2021 Aug; 132():23-30. PubMed ID: 34304019
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vapor-Phase Dicarboxylic Acids and Anhydrides Drive Depolymerization of Polyurethanes.
    Liu B; Westman Z; Richardson K; Lim D; Stottlemyer AL; Gillis P; Letko CS; Hooshyar N; Vlcek V; Christopher P; Abu-Omar MM
    ACS Macro Lett; 2024 Apr; 13(4):435-439. PubMed ID: 38546447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive Enhancement of Prepolymer-Based Flexible Polyurethane Foams' Performance by Introduction of Cost-Effective Waste-Based Ground Tire Rubber Particles.
    Żukowska W; Kosmela P; Wojtasz P; Szczepański M; Piasecki A; Barczewski R; Barczewski M; Hejna A
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.