These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Computational density-functional approaches on finite-size and guest-lattice effects in CO Cabrera-Ramírez A; Yanes-Rodríguez R; Prosmiti R J Chem Phys; 2021 Jan; 154(4):044301. PubMed ID: 33514100 [TBL] [Abstract][Full Text] [Related]
5. A Systematic Protocol for Benchmarking Guest-Host Interactions by First-Principles Computations: Capturing CO Arismendi-Arrieta DJ; Valdés Á; Prosmiti R Chemistry; 2018 Jul; 24(37):9353-9363. PubMed ID: 29600599 [TBL] [Abstract][Full Text] [Related]
6. Structural Stability of the CO Cabrera-Ramírez A; Arismendi-Arrieta DJ; Valdés Á; Prosmiti R Chemphyschem; 2020 Dec; 21(23):2618-2628. PubMed ID: 33001534 [TBL] [Abstract][Full Text] [Related]
7. Confining He Atoms in Diverse Ice-Phases: Examining the Stability of He Hydrate Crystals through DFT Approaches. Yanes-Rodríguez R; Prosmiti R Molecules; 2023 Dec; 28(23):. PubMed ID: 38067621 [TBL] [Abstract][Full Text] [Related]
9. Delving into guest-free and He-filled sI and sII clathrate hydrates: a first-principles computational study. Yanes-Rodríguez R; Cabrera-Ramírez A; Prosmiti R Phys Chem Chem Phys; 2022 Jun; 24(21):13119-13129. PubMed ID: 35587105 [TBL] [Abstract][Full Text] [Related]
10. Computational phase diagrams of noble gas hydrates under pressure. Teeratchanan P; Hermann A J Chem Phys; 2015 Oct; 143(15):154507. PubMed ID: 26493915 [TBL] [Abstract][Full Text] [Related]
11. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates. Alavi S; Ohmura R J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458 [TBL] [Abstract][Full Text] [Related]
12. Calculations on noncovalent interactions and databases of benchmark interaction energies. Hobza P Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511 [TBL] [Abstract][Full Text] [Related]
13. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
14. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates. Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018 [TBL] [Abstract][Full Text] [Related]
15. A Simple Correction for Nonadditive Dispersion within Extended Symmetry-Adapted Perturbation Theory (XSAPT). Lao KU; Herbert JM J Chem Theory Comput; 2018 Oct; 14(10):5128-5142. PubMed ID: 30199632 [TBL] [Abstract][Full Text] [Related]
16. Dispersion Interactions with Density-Functional Theory: Benchmarking Semiempirical and Interatomic Pairwise Corrected Density Functionals. Marom N; Tkatchenko A; Rossi M; Gobre VV; Hod O; Scheffler M; Kronik L J Chem Theory Comput; 2011 Dec; 7(12):3944-51. PubMed ID: 26598340 [TBL] [Abstract][Full Text] [Related]
17. Interaction between water and carbon nanostructures: How good are current density functional approximations? Brandenburg JG; Zen A; Alfè D; Michaelides A J Chem Phys; 2019 Oct; 151(16):164702. PubMed ID: 31675894 [TBL] [Abstract][Full Text] [Related]