These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Transcriptional regulation of elsinochrome phytotoxin biosynthesis by an EfSTE12 activator in the citrus scab pathogen Elsinoë fawcettii. Yang SL; Chung KR Fungal Biol; 2010 Jan; 114(1):64-73. PubMed ID: 20965063 [TBL] [Abstract][Full Text] [Related]
6. A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. Graham-Taylor C; Kamphuis LG; Derbyshire MC BMC Genomics; 2020 Jan; 21(1):7. PubMed ID: 31898475 [TBL] [Abstract][Full Text] [Related]
7. Genetic dissection defines the roles of elsinochrome Phytotoxin for fungal pathogenesis and conidiation of the citrus pathogen Elsinoë fawcettii. Liao HL; Chung KR Mol Plant Microbe Interact; 2008 Apr; 21(4):469-79. PubMed ID: 18321192 [TBL] [Abstract][Full Text] [Related]
8. Determination of a transcriptional regulator-like gene involved in biosynthesis of elsinochrome phytotoxin by the citrus scab fungus, Elsinoë fawcettii. Chung KR; Liao HL Microbiology (Reading); 2008 Nov; 154(Pt 11):3556-3566. PubMed ID: 18957608 [TBL] [Abstract][Full Text] [Related]
9. Comparative genomics to explore phylogenetic relationship, cryptic sexual potential and host specificity of Rhynchosporium species on grasses. Penselin D; Münsterkötter M; Kirsten S; Felder M; Taudien S; Platzer M; Ashelford K; Paskiewicz KH; Harrison RJ; Hughes DJ; Wolf T; Shelest E; Graap J; Hoffmann J; Wenzel C; Wöltje N; King KM; Fitt BD; Güldener U; Avrova A; Knogge W BMC Genomics; 2016 Nov; 17(1):953. PubMed ID: 27875982 [TBL] [Abstract][Full Text] [Related]
10. An Interspecies Comparative Analysis of the Predicted Secretomes of the Necrotrophic Plant Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Heard S; Brown NA; Hammond-Kosack K PLoS One; 2015; 10(6):e0130534. PubMed ID: 26107498 [TBL] [Abstract][Full Text] [Related]
11. In silico prediction and characterization of secondary metabolite biosynthetic gene clusters in the wheat pathogen Zymoseptoria tritici. Cairns T; Meyer V BMC Genomics; 2017 Aug; 18(1):631. PubMed ID: 28818040 [TBL] [Abstract][Full Text] [Related]
12. A Set of Conventional and Multiplex Real-Time PCR Assays for Direct Detection of Elsinoë fawcettii, E. australis, and Pseudocercospora angolensis in Citrus Fruits. Ahmed Y; Hubert J; Fourrier-Jeandel C; Dewdney MM; Aguayo J; Ioos R Plant Dis; 2019 Feb; 103(2):345-356. PubMed ID: 30566843 [TBL] [Abstract][Full Text] [Related]
13. Comparative analysis of the predicted secretomes of Rosaceae scab pathogens Venturia inaequalis and V. pirina reveals expanded effector families and putative determinants of host range. Deng CH; Plummer KM; Jones DAB; Mesarich CH; Shiller J; Taranto AP; Robinson AJ; Kastner P; Hall NE; Templeton MD; Bowen JK BMC Genomics; 2017 May; 18(1):339. PubMed ID: 28464870 [TBL] [Abstract][Full Text] [Related]
14. Genomic analysis of Elsinoë arachidis reveals its potential pathogenic mechanism and the biosynthesis pathway of elsinochrome toxin. Jiao W; Xu M; Zhou R; Fu Y; Li Z; Xue C PLoS One; 2021; 16(12):e0261487. PubMed ID: 34914789 [TBL] [Abstract][Full Text] [Related]
15. Comparative genomics of a plant-pathogenic fungus, Pyrenophora tritici-repentis, reveals transduplication and the impact of repeat elements on pathogenicity and population divergence. Manning VA; Pandelova I; Dhillon B; Wilhelm LJ; Goodwin SB; Berlin AM; Figueroa M; Freitag M; Hane JK; Henrissat B; Holman WH; Kodira CD; Martin J; Oliver RP; Robbertse B; Schackwitz W; Schwartz DC; Spatafora JW; Turgeon BG; Yandava C; Young S; Zhou S; Zeng Q; Grigoriev IV; Ma LJ; Ciuffetti LM G3 (Bethesda); 2013 Jan; 3(1):41-63. PubMed ID: 23316438 [TBL] [Abstract][Full Text] [Related]
16. The genome of the emerging barley pathogen Ramularia collo-cygni. McGrann GR; Andongabo A; Sjökvist E; Trivedi U; Dussart F; Kaczmarek M; Mackenzie A; Fountaine JM; Taylor JM; Paterson LJ; Gorniak K; Burnett F; Kanyuka K; Hammond-Kosack KE; Rudd JJ; Blaxter M; Havis ND BMC Genomics; 2016 Aug; 17():584. PubMed ID: 27506390 [TBL] [Abstract][Full Text] [Related]
17. Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. Amselem J; Cuomo CA; van Kan JA; Viaud M; Benito EP; Couloux A; Coutinho PM; de Vries RP; Dyer PS; Fillinger S; Fournier E; Gout L; Hahn M; Kohn L; Lapalu N; Plummer KM; Pradier JM; Quévillon E; Sharon A; Simon A; ten Have A; Tudzynski B; Tudzynski P; Wincker P; Andrew M; Anthouard V; Beever RE; Beffa R; Benoit I; Bouzid O; Brault B; Chen Z; Choquer M; Collémare J; Cotton P; Danchin EG; Da Silva C; Gautier A; Giraud C; Giraud T; Gonzalez C; Grossetete S; Güldener U; Henrissat B; Howlett BJ; Kodira C; Kretschmer M; Lappartient A; Leroch M; Levis C; Mauceli E; Neuvéglise C; Oeser B; Pearson M; Poulain J; Poussereau N; Quesneville H; Rascle C; Schumacher J; Ségurens B; Sexton A; Silva E; Sirven C; Soanes DM; Talbot NJ; Templeton M; Yandava C; Yarden O; Zeng Q; Rollins JA; Lebrun MH; Dickman M PLoS Genet; 2011 Aug; 7(8):e1002230. PubMed ID: 21876677 [TBL] [Abstract][Full Text] [Related]
18. Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Kämper J; Kahmann R; Bölker M; Ma LJ; Brefort T; Saville BJ; Banuett F; Kronstad JW; Gold SE; Müller O; Perlin MH; Wösten HA; de Vries R; Ruiz-Herrera J; Reynaga-Peña CG; Snetselaar K; McCann M; Pérez-Martín J; Feldbrügge M; Basse CW; Steinberg G; Ibeas JI; Holloman W; Guzman P; Farman M; Stajich JE; Sentandreu R; González-Prieto JM; Kennell JC; Molina L; Schirawski J; Mendoza-Mendoza A; Greilinger D; Münch K; Rössel N; Scherer M; Vranes M; Ladendorf O; Vincon V; Fuchs U; Sandrock B; Meng S; Ho EC; Cahill MJ; Boyce KJ; Klose J; Klosterman SJ; Deelstra HJ; Ortiz-Castellanos L; Li W; Sanchez-Alonso P; Schreier PH; Häuser-Hahn I; Vaupel M; Koopmann E; Friedrich G; Voss H; Schlüter T; Margolis J; Platt D; Swimmer C; Gnirke A; Chen F; Vysotskaia V; Mannhaupt G; Güldener U; Münsterkötter M; Haase D; Oesterheld M; Mewes HW; Mauceli EW; DeCaprio D; Wade CM; Butler J; Young S; Jaffe DB; Calvo S; Nusbaum C; Galagan J; Birren BW Nature; 2006 Nov; 444(7115):97-101. PubMed ID: 17080091 [TBL] [Abstract][Full Text] [Related]
19. Different Phytohormonal Responses on Satsuma Mandarin (Citrus unshiu) Leaves Infected with Host-Compatible or Host-Incompatible Elsinoë fawcettii. Shin K; Paudyal DP; Lee SC; Hyun JW Plant Pathol J; 2021 Jun; 37(3):268-279. PubMed ID: 34111916 [TBL] [Abstract][Full Text] [Related]
20. New multiplex conventional PCR and quadruplex real-time PCR assays for one-tube detection of Phyllosticta citricarpa, Elsinoë fawcettii, Elsinoë australis, and Pseudocercospora angolensis in Citrus: development and validation. Ahmed Y; Hussein A; Hubert J; Fourrier-Jeandel C; Aguayo J; Ioos R Appl Microbiol Biotechnol; 2020 Nov; 104(21):9363-9385. PubMed ID: 32926221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]