BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32470289)

  • 1. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami.
    Torelli E; Kozyra J; Shirt-Ediss B; Piantanida L; Voïtchovsky K; Krasnogor N
    ACS Synth Biol; 2020 Jul; 9(7):1682-1692. PubMed ID: 32470289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon.
    Torelli E; Kozyra JW; Gu JY; Stimming U; Piantanida L; Voïtchovsky K; Krasnogor N
    Sci Rep; 2018 May; 8(1):6989. PubMed ID: 29725066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of a DNA Origami Chinese Knot by Only 15% of the Staple Strands.
    He K; Li Z; Liu L; Zheng M; Mao C
    Chembiochem; 2020 Aug; 21(15):2132-2136. PubMed ID: 32196869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-Up Split Broccoli Aptamer as a Versatile Tool for RNA Assembly Monitoring in Cell-Free TX-TL Systems, Hybrid RNA/DNA Origami Tagging and DNA Biosensing.
    Torelli E; Shirt-Ediss B; Navarro SA; Manzano M; Vizzini P; Krasnogor N
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
    Walter HK; Bauer J; Steinmeyer J; Kuzuya A; Niemeyer CM; Wagenknecht HA
    Nano Lett; 2017 Apr; 17(4):2467-2472. PubMed ID: 28249387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mini DNA-RNA hybrid origami nanobrick.
    Zhou L; Chandrasekaran AR; Yan M; Valsangkar VA; Feldblyum JI; Sheng J; Halvorsen K
    Nanoscale Adv; 2021 Jul; 3(14):4048-4051. PubMed ID: 34355117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.
    Kozyra J; Ceccarelli A; Torelli E; Lopiccolo A; Gu JY; Fellermann H; Stimming U; Krasnogor N
    ACS Synth Biol; 2017 Jul; 6(7):1140-1149. PubMed ID: 28414914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of chemically modified RNA origami nanostructures.
    Endo M; Takeuchi Y; Emura T; Hidaka K; Sugiyama H
    Chemistry; 2014 Nov; 20(47):15330-3. PubMed ID: 25313942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward larger DNA origami.
    Marchi AN; Saaem I; Vogen BN; Brown S; LaBean TH
    Nano Lett; 2014 Oct; 14(10):5740-7. PubMed ID: 25179827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-pot assembly of a hetero-dimeric DNA origami from chip-derived staples and double-stranded scaffold.
    Marchi AN; Saaem I; Tian J; LaBean TH
    ACS Nano; 2013 Feb; 7(2):903-10. PubMed ID: 23281627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.
    Li M; Zheng M; Wu S; Tian C; Liu D; Weizmann Y; Jiang W; Wang G; Mao C
    Nat Commun; 2018 Jun; 9(1):2196. PubMed ID: 29875441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-DNA hybrid origami: folding of a long RNA single strand into complex nanostructures using short DNA helper strands.
    Wang P; Ko SH; Tian C; Hao C; Mao C
    Chem Commun (Camb); 2013 Jun; 49(48):5462-4. PubMed ID: 23660602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Staple Age on DNA Origami Nanostructure Assembly and Stability.
    Kielar C; Xin Y; Xu X; Zhu S; Gorin N; Grundmeier G; Möser C; Smith DM; Keller A
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31315177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy.
    Wang J; Wei Y; Zhang P; Wang Y; Xia Q; Liu X; Luo S; Shi J; Hu J; Fan C; Li B; Wang L; Zhou X; Li J
    Nano Lett; 2022 Sep; 22(17):7173-7179. PubMed ID: 35977401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template.
    Helmig S; Rotaru A; Arian D; Kovbasyuk L; Arnbjerg J; Ogilby PR; Kjems J; Mokhir A; Besenbacher F; Gothelf KV
    ACS Nano; 2010 Dec; 4(12):7475-80. PubMed ID: 21090671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A single-stranded architecture for cotranscriptional folding of RNA nanostructures.
    Geary C; Rothemund PW; Andersen ES
    Science; 2014 Aug; 345(6198):799-804. PubMed ID: 25124436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A; Ohya Y
    Acc Chem Res; 2014 Jun; 47(6):1742-9. PubMed ID: 24772996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA origami frame filled with two types of single-stranded tiles.
    Chen C; Xu J; Ruan L; Zhao H; Li X; Shi X
    Nanoscale; 2022 Apr; 14(14):5340-5346. PubMed ID: 35352725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing.
    Chen G; Liu D; He C; Gannett TR; Lin W; Weizmann Y
    J Am Chem Soc; 2015 Mar; 137(11):3844-51. PubMed ID: 25622178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct visualization of the movement of a single T7 RNA polymerase and transcription on a DNA nanostructure.
    Endo M; Tatsumi K; Terushima K; Katsuda Y; Hidaka K; Harada Y; Sugiyama H
    Angew Chem Int Ed Engl; 2012 Aug; 51(35):8778-82. PubMed ID: 22848002
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.