These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 32470293)
1. Development of a Proline-Based Selection System for Reliable Genetic Engineering in Chinese Hamster Ovary Cells. Sun T; Kwok WC; Chua KJ; Lo TM; Potter J; Yew WS; Chesnut JD; Hwang IY; Chang MW ACS Synth Biol; 2020 Jul; 9(7):1864-1872. PubMed ID: 32470293 [TBL] [Abstract][Full Text] [Related]
2. A proline metabolism selection system and its application to the engineering of lipid biosynthesis in Chinese hamster ovary cells. Budge JD; Roobol J; Singh G; Mozzanino T; Knight TJ; Povey J; Dean A; Turner SJ; Jaques CM; Young RJ; Racher AJ; Smales CM Metab Eng Commun; 2021 Dec; 13():e00179. PubMed ID: 34386349 [TBL] [Abstract][Full Text] [Related]
3. Reducing recombinant protein expression during CHO pool selection enhances frequency of high-producing cells. Poulain A; Mullick A; Massie B; Durocher Y J Biotechnol; 2019 Apr; 296():32-41. PubMed ID: 30885656 [TBL] [Abstract][Full Text] [Related]
4. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells. Naderi F; Hashemi M; Bayat H; Mohammadian O; Pourmaleki E; Etemadzadeh MH; Rahimpour A Monoclon Antib Immunodiagn Immunother; 2018 Nov; 37(5):200-206. PubMed ID: 30362930 [TBL] [Abstract][Full Text] [Related]
5. Attenuated glutamine synthetase as a selection marker in CHO cells to efficiently isolate highly productive stable cells for the production of antibodies and other biologics. Lin PC; Chan KF; Kiess IA; Tan J; Shahreel W; Wong SY; Song Z MAbs; 2019 Jul; 11(5):965-976. PubMed ID: 31043114 [TBL] [Abstract][Full Text] [Related]
6. Auditioning of CHO host cell lines using the artificial chromosome expression (ACE) technology. Kennard ML; Goosney DL; Monteith D; Roe S; Fischer D; Mott J Biotechnol Bioeng; 2009 Oct; 104(3):526-39. PubMed ID: 19544304 [TBL] [Abstract][Full Text] [Related]
7. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase. Baumgartner MR; Hu CA; Almashanu S; Steel G; Obie C; Aral B; Rabier D; Kamoun P; Saudubray JM; Valle D Hum Mol Genet; 2000 Nov; 9(19):2853-8. PubMed ID: 11092761 [TBL] [Abstract][Full Text] [Related]
8. Optimization of cell line development in the GS-CHO expression system using a high-throughput, single cell-based clone selection system. Nakamura T; Omasa T J Biosci Bioeng; 2015 Sep; 120(3):323-9. PubMed ID: 25792187 [TBL] [Abstract][Full Text] [Related]
9. Model-directed engineering of "difficult-to-express" monoclonal antibody production by Chinese hamster ovary cells. Pybus LP; Dean G; West NR; Smith A; Daramola O; Field R; Wilkinson SJ; James DC Biotechnol Bioeng; 2014 Feb; 111(2):372-85. PubMed ID: 24081924 [TBL] [Abstract][Full Text] [Related]
10. The generation of stable, high MAb expressing CHO cell lines based on the artificial chromosome expression (ACE) technology. Kennard ML; Goosney DL; Monteith D; Zhang L; Moffat M; Fischer D; Mott J Biotechnol Bioeng; 2009 Oct; 104(3):540-53. PubMed ID: 19557833 [TBL] [Abstract][Full Text] [Related]
11. High-frequency induction by 5-azacytidine of proline independence in CHO-K1 cells. Harris M Somat Cell Mol Genet; 1984 Nov; 10(6):615-24. PubMed ID: 6209809 [TBL] [Abstract][Full Text] [Related]
12. Pyrroline-5-carboxylate synthase activity in mammalian cells. Smith RJ; Downing SJ; Phang JM; Lodato RF; Aoki TT Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5221-5. PubMed ID: 6933554 [TBL] [Abstract][Full Text] [Related]
13. Development of a highly-efficient CHO cell line generation system with engineered SV40E promoter. Fan L; Kadura I; Krebs LE; Larson JL; Bowden DM; Frye CC J Biotechnol; 2013 Dec; 168(4):652-8. PubMed ID: 23994266 [TBL] [Abstract][Full Text] [Related]
14. A doubly auxotrophic CHO-K1 cell line for the production of recombinant monoclonal antibodies. Zhang Q; Jiang B; Du Z; Chasin LA Biotechnol Bioeng; 2020 Aug; 117(8):2401-2409. PubMed ID: 32346859 [TBL] [Abstract][Full Text] [Related]
16. Rapid amplification system for recombinant protein production in Chinese Hamster Ovary (CHO) Cells. Metta MK; Kunaparaju RK; Tantravahi S Cell Mol Biol (Noisy-le-grand); 2016 Feb; 62(2):101-6. PubMed ID: 26950459 [TBL] [Abstract][Full Text] [Related]
17. Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. Tomenchok DM; Brandriss MC J Bacteriol; 1987 Dec; 169(12):5364-72. PubMed ID: 2824433 [TBL] [Abstract][Full Text] [Related]
18. A CRISPR/Cas9 based engineering strategy for overexpression of multiple genes in Chinese hamster ovary cells. Eisenhut P; Klanert G; Weinguny M; Baier L; Jadhav V; Ivansson D; Borth N Metab Eng; 2018 Jul; 48():72-81. PubMed ID: 29852271 [TBL] [Abstract][Full Text] [Related]
19. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Yin B; Wang Q; Chung CY; Ren X; Bhattacharya R; Yarema KJ; Betenbaugh MJ Biotechnol Bioeng; 2018 Jun; 115(6):1531-1541. PubMed ID: 29427449 [TBL] [Abstract][Full Text] [Related]
20. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. Zhou H; Liu ZG; Sun ZW; Huang Y; Yu WY J Biotechnol; 2010 May; 147(2):122-9. PubMed ID: 20371256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]