These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 32470317)

  • 1. A Conserved Proline Hinge Mediates Helix Dynamics and Activation of Rhodopsin.
    Pope AL; Sanchez-Reyes OB; South K; Zaitseva E; Ziliox M; Vogel R; Reeves PJ; Smith SO
    Structure; 2020 Sep; 28(9):1004-1013.e4. PubMed ID: 32470317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Location of Trp265 in metarhodopsin II: implications for the activation mechanism of the visual receptor rhodopsin.
    Crocker E; Eilers M; Ahuja S; Hornak V; Hirshfeld A; Sheves M; Smith SO
    J Mol Biol; 2006 Mar; 357(1):163-72. PubMed ID: 16414074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in interhelical hydrogen bonding upon rhodopsin activation.
    Patel AB; Crocker E; Reeves PJ; Getmanova EV; Eilers M; Khorana HG; Smith SO
    J Mol Biol; 2005 Apr; 347(4):803-12. PubMed ID: 15769471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.
    Ye S; Zaitseva E; Caltabiano G; Schertler GF; Sakmar TP; Deupi X; Vogel R
    Nature; 2010 Apr; 464(7293):1386-9. PubMed ID: 20383122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retinal orientation and interactions in rhodopsin reveal a two-stage trigger mechanism for activation.
    Kimata N; Pope A; Eilers M; Opefi CA; Ziliox M; Hirshfeld A; Zaitseva E; Vogel R; Sheves M; Reeves PJ; Smith SO
    Nat Commun; 2016 Sep; 7():12683. PubMed ID: 27585742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transitions of transmembrane helix 6 in the formation of metarhodopsin I.
    Eilers M; Goncalves JA; Ahuja S; Kirkup C; Hirshfeld A; Simmerling C; Reeves PJ; Sheves M; Smith SO
    J Phys Chem B; 2012 Sep; 116(35):10477-89. PubMed ID: 22564141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural basis of agonist-induced activation in constitutively active rhodopsin.
    Standfuss J; Edwards PC; D'Antona A; Fransen M; Xie G; Oprian DD; Schertler GF
    Nature; 2011 Mar; 471(7340):656-60. PubMed ID: 21389983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two protonation switches control rhodopsin activation in membranes.
    Mahalingam M; Martínez-Mayorga K; Brown MF; Vogel R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17795-800. PubMed ID: 18997017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal dynamics during light activation of rhodopsin revealed by solid-state NMR spectroscopy.
    Brown MF; Salgado GF; Struts AV
    Biochim Biophys Acta; 2010 Feb; 1798(2):177-93. PubMed ID: 19716801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shift in Conformational Equilibrium Induces Constitutive Activity of G-Protein-Coupled Receptor, Rhodopsin.
    Maeda R; Hiroshima M; Yamashita T; Wada A; Sako Y; Shichida Y; Imamoto Y
    J Phys Chem B; 2018 May; 122(18):4838-4843. PubMed ID: 29668280
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free backbone carbonyls mediate rhodopsin activation.
    Kimata N; Pope A; Sanchez-Reyes OB; Eilers M; Opefi CA; Ziliox M; Reeves PJ; Smith SO
    Nat Struct Mol Biol; 2016 Aug; 23(8):738-43. PubMed ID: 27376589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.
    Woods KN; Pfeffer J; Dutta A; Klein-Seetharaman J
    Sci Rep; 2016 Nov; 6():37290. PubMed ID: 27849063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly conserved tyrosine stabilizes the active state of rhodopsin.
    Goncalves JA; South K; Ahuja S; Zaitseva E; Opefi CA; Eilers M; Vogel R; Reeves PJ; Smith SO
    Proc Natl Acad Sci U S A; 2010 Nov; 107(46):19861-6. PubMed ID: 21041664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular interactions that induce helical rearrangement upon rhodopsin activation: light-induced structural changes in metarhodopsin IIa probed by cysteine S-H stretching vibrations.
    Yamazaki Y; Nagata T; Terakita A; Kandori H; Shichida Y; Imamoto Y
    J Biol Chem; 2014 May; 289(20):13792-800. PubMed ID: 24692562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The steric trigger in rhodopsin activation.
    Shieh T; Han M; Sakmar TP; Smith SO
    J Mol Biol; 1997 Jun; 269(3):373-84. PubMed ID: 9199406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precision vs flexibility in GPCR signaling.
    Elgeti M; Rose AS; Bartl FJ; Hildebrand PW; Hofmann KP; Heck M
    J Am Chem Soc; 2013 Aug; 135(33):12305-12. PubMed ID: 23883288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Helix 3 acts as a conformational hinge in Class A GPCR activation: An analysis of interhelical interaction energies in crystal structures.
    Lans I; Dalton JAR; Giraldo J
    J Struct Biol; 2015 Dec; 192(3):545-553. PubMed ID: 26522273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.