BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32470320)

  • 1. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast.
    Li Y; Tian C; Liu K; Zhou Y; Yang J; Zou P
    Cell Chem Biol; 2020 Jul; 27(7):858-865.e8. PubMed ID: 32470320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Proximity-Dependent Proteomic Profiling in Yeast Cells by APEX and Alk-Ph Probe.
    Li Y; Liu K; Zhou Y; Yang J; Zou P
    STAR Protoc; 2020 Dec; 1(3):100137. PubMed ID: 33377031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APEX2-mediated proximity labeling resolves protein networks in Saccharomyces cerevisiae cells.
    Singer-Krüger B; Fröhlich T; Franz-Wachtel M; Nalpas N; Macek B; Jansen RP
    FEBS J; 2020 Jan; 287(2):325-344. PubMed ID: 31323700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Mapping by APEX2-Catalyzed Proximity Labeling in Saccharomyces cerevisiae Semipermeabilized Cells.
    Singer-Krüger B; Jansen RP
    Methods Mol Biol; 2022; 2477():261-274. PubMed ID: 35524122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.
    Hwang J; Espenshade PJ
    Biochem J; 2016 Aug; 473(16):2463-9. PubMed ID: 27274088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differently Tagged Probes for Protein Profiling of Mitochondria.
    Dong J; Hong D; Lang W; Huang J; Qian L; Zhu Q; Li L; Ge J
    Chembiochem; 2019 May; 20(9):1155-1160. PubMed ID: 30600897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics.
    Kalocsay M
    Methods Mol Biol; 2019; 2008():41-55. PubMed ID: 31124087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
    Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. APEX Proximity Labeling as a Versatile Tool for Biological Research.
    Nguyen TMT; Kim J; Doan TT; Lee MW; Lee M
    Biochemistry; 2020 Jan; 59(3):260-269. PubMed ID: 31718172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed Evolution of Split APEX2 Peroxidase.
    Han Y; Branon TC; Martell JD; Boassa D; Shechner D; Ellisman MH; Ting A
    ACS Chem Biol; 2019 Apr; 14(4):619-635. PubMed ID: 30848125
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of APEX2 for electron microscopy and proximity labeling.
    Lam SS; Martell JD; Kamer KJ; Deerinck TJ; Ellisman MH; Mootha VK; Ting AY
    Nat Methods; 2015 Jan; 12(1):51-4. PubMed ID: 25419960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the Environment of Emerin by Enhanced Ascorbate Peroxidase 2 (APEX2)-Mediated Proximity Labeling.
    Müller M; James C; Lenz C; Urlaub H; Kehlenbach RH
    Cells; 2020 Mar; 9(3):. PubMed ID: 32138363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.
    Rowland MM; Bostic HE; Gong D; Speers AE; Lucas N; Cho W; Cravatt BF; Best MD
    Biochemistry; 2011 Dec; 50(51):11143-61. PubMed ID: 22074223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interrogating Kinase-Substrate Relationships with Proximity Labeling and Phosphorylation Enrichment.
    Zhang T; Fassl A; Vaites LP; Fu S; Sicinski P; Paulo JA; Gygi SP
    J Proteome Res; 2022 Feb; 21(2):494-506. PubMed ID: 35044772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics of Primary Cilia by Proximity Labeling.
    Mick DU; Rodrigues RB; Leib RD; Adams CM; Chien AS; Gygi SP; Nachury MV
    Dev Cell; 2015 Nov; 35(4):497-512. PubMed ID: 26585297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase.
    Chen CL; Hu Y; Udeshi ND; Lau TY; Wirtz-Peitz F; He L; Ting AY; Carr SA; Perrimon N
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12093-8. PubMed ID: 26362788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishing Cell Culture-Based Experimental Setups for Proximity Labeling Using Ascorbate Peroxidase (APEX).
    Mick DU
    Methods Mol Biol; 2019; 2008():29-39. PubMed ID: 31124086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.