These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32470320)

  • 1. A Clickable APEX Probe for Proximity-Dependent Proteomic Profiling in Yeast.
    Li Y; Tian C; Liu K; Zhou Y; Yang J; Zou P
    Cell Chem Biol; 2020 Jul; 27(7):858-865.e8. PubMed ID: 32470320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Proximity-Dependent Proteomic Profiling in Yeast Cells by APEX and Alk-Ph Probe.
    Li Y; Liu K; Zhou Y; Yang J; Zou P
    STAR Protoc; 2020 Dec; 1(3):100137. PubMed ID: 33377031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. APEX2-mediated proximity labeling resolves protein networks in Saccharomyces cerevisiae cells.
    Singer-Krüger B; Fröhlich T; Franz-Wachtel M; Nalpas N; Macek B; Jansen RP
    FEBS J; 2020 Jan; 287(2):325-344. PubMed ID: 31323700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic Mapping by APEX2-Catalyzed Proximity Labeling in Saccharomyces cerevisiae Semipermeabilized Cells.
    Singer-Krüger B; Jansen RP
    Methods Mol Biol; 2022; 2477():261-274. PubMed ID: 35524122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity-dependent biotin labelling in yeast using the engineered ascorbate peroxidase APEX2.
    Hwang J; Espenshade PJ
    Biochem J; 2016 Aug; 473(16):2463-9. PubMed ID: 27274088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An APEX2-based proximity-dependent biotinylation assay with temporal specificity to study protein interactions during autophagy in the yeast
    Filali-Mouncef Y; Leytens A; Vargas Duarte P; Zampieri M; Dengjel J; Reggiori F
    Autophagy; 2024 Oct; 20(10):2323-2337. PubMed ID: 38958087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differently Tagged Probes for Protein Profiling of Mitochondria.
    Dong J; Hong D; Lang W; Huang J; Qian L; Zhu Q; Li L; Ge J
    Chembiochem; 2019 May; 20(9):1155-1160. PubMed ID: 30600897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APEX Peroxidase-Catalyzed Proximity Labeling and Multiplexed Quantitative Proteomics.
    Kalocsay M
    Methods Mol Biol; 2019; 2008():41-55. PubMed ID: 31124087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells.
    Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. APEX Proximity Labeling as a Versatile Tool for Biological Research.
    Nguyen TMT; Kim J; Doan TT; Lee MW; Lee M
    Biochemistry; 2020 Jan; 59(3):260-269. PubMed ID: 31718172
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed Evolution of Split APEX2 Peroxidase.
    Han Y; Branon TC; Martell JD; Boassa D; Shechner D; Ellisman MH; Ting A
    ACS Chem Biol; 2019 Apr; 14(4):619-635. PubMed ID: 30848125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Directed evolution of APEX2 for electron microscopy and proximity labeling.
    Lam SS; Martell JD; Kamer KJ; Deerinck TJ; Ellisman MH; Mootha VK; Ting AY
    Nat Methods; 2015 Jan; 12(1):51-4. PubMed ID: 25419960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the Environment of Emerin by Enhanced Ascorbate Peroxidase 2 (APEX2)-Mediated Proximity Labeling.
    Müller M; James C; Lenz C; Urlaub H; Kehlenbach RH
    Cells; 2020 Mar; 9(3):. PubMed ID: 32138363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol 3,4,5-trisphosphate activity probes for the labeling and proteomic characterization of protein binding partners.
    Rowland MM; Bostic HE; Gong D; Speers AE; Lucas N; Cho W; Cravatt BF; Best MD
    Biochemistry; 2011 Dec; 50(51):11143-61. PubMed ID: 22074223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrogating Kinase-Substrate Relationships with Proximity Labeling and Phosphorylation Enrichment.
    Zhang T; Fassl A; Vaites LP; Fu S; Sicinski P; Paulo JA; Gygi SP
    J Proteome Res; 2022 Feb; 21(2):494-506. PubMed ID: 35044772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomics of Primary Cilia by Proximity Labeling.
    Mick DU; Rodrigues RB; Leib RD; Adams CM; Chien AS; Gygi SP; Nachury MV
    Dev Cell; 2015 Nov; 35(4):497-512. PubMed ID: 26585297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic mapping in live Drosophila tissues using an engineered ascorbate peroxidase.
    Chen CL; Hu Y; Udeshi ND; Lau TY; Wirtz-Peitz F; He L; Ting AY; Carr SA; Perrimon N
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12093-8. PubMed ID: 26362788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.