BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 32470363)

  • 1. Rho of Plants GTPases and Cytoskeletal Elements Control Nuclear Positioning and Asymmetric Cell Division during Physcomitrella patens Branching.
    Yi P; Goshima G
    Curr Biol; 2020 Jul; 30(14):2860-2868.e3. PubMed ID: 32470363
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    de Keijzer J; Freire Rios A; Willemsen V
    Int J Mol Sci; 2021 Mar; 22(5):. PubMed ID: 33807788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNAi screening identifies the armadillo repeat-containing kinesins responsible for microtubule-dependent nuclear positioning in Physcomitrella patens.
    Miki T; Nishina M; Goshima G
    Plant Cell Physiol; 2015 Apr; 56(4):737-49. PubMed ID: 25588389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and Tissue-Level Patterning.
    Cheng X; Mwaura BW; Chang Stauffer SR; Bezanilla M
    Plant Cell; 2020 Nov; 32(11):3436-3451. PubMed ID: 32917738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opposing, Polarity-Driven Nuclear Migrations Underpin Asymmetric Divisions to Pattern Arabidopsis Stomata.
    Muroyama A; Gong Y; Bergmann DC
    Curr Biol; 2020 Nov; 30(22):4467-4475.e4. PubMed ID: 32946753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spindle motility skews division site determination during asymmetric cell division in Physcomitrella.
    Kozgunova E; Yoshida MW; Reski R; Goshima G
    Nat Commun; 2022 May; 13(1):2488. PubMed ID: 35513464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic MTOCs control spindle orientation for asymmetric cell division in plants.
    Kosetsu K; Murata T; Yamada M; Nishina M; Boruc J; Hasebe M; Van Damme D; Goshima G
    Proc Natl Acad Sci U S A; 2017 Oct; 114(42):E8847-E8854. PubMed ID: 28973935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic survey of the function of ROP regulators and effectors during tip growth in the moss Physcomitrella patens.
    Bascom C; Burkart GM; Mallett DR; O'Sullivan JE; Tomaszewski AJ; Walsh K; Bezanilla M
    J Exp Bot; 2019 Jan; 70(2):447-457. PubMed ID: 30380098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A family of ROP proteins that suppresses actin dynamics, and is essential for polarized growth and cell adhesion.
    Burkart GM; Baskin TI; Bezanilla M
    J Cell Sci; 2015 Jul; 128(14):2553-64. PubMed ID: 26045445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physcomitrella patens: a model to investigate the role of RAC/ROP GTPase signalling in tip growth.
    Eklund DM; Svensson EM; Kost B
    J Exp Bot; 2010 Apr; 61(7):1917-37. PubMed ID: 20368308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved function of Rho-related Rop/RAC GTPase signaling in regulation of cell polarity in Physcomitrella patens.
    Ito K; Ren J; Fujita T
    Gene; 2014 Jul; 544(2):241-7. PubMed ID: 24769554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin and microtubule cross talk mediates persistent polarized growth.
    Wu SZ; Bezanilla M
    J Cell Biol; 2018 Oct; 217(10):3531-3544. PubMed ID: 30061106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The 2D to 3D growth transition in the moss Physcomitrella patens.
    Moody LA
    Curr Opin Plant Biol; 2019 Feb; 47():88-95. PubMed ID: 30399606
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two ANGUSTIFOLIA genes regulate gametophore and sporophyte development in Physcomitrella patens.
    Hashida Y; Takechi K; Abiru T; Yabe N; Nagase H; Hattori K; Takio S; Sato Y; Hasebe M; Tsukaya H; Takano H
    Plant J; 2020 Mar; 101(6):1318-1330. PubMed ID: 31674691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo visualization of F-actin structures during the development of the moss Physcomitrella patens.
    Finka A; Schaefer DG; Saidi Y; Goloubinoff P; Zrÿd JP
    New Phytol; 2007; 174(1):63-76. PubMed ID: 17335498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cellular function of ROP GTPase prenylation is important for multicellularity in the moss Physcomitrium patens.
    Bao L; Ren J; Nguyen M; Slusarczyk AS; Thole JM; Martinez SP; Huang J; Fujita T; Running MP
    Development; 2022 Jun; 149(12):. PubMed ID: 35660859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profilin is essential for tip growth in the moss Physcomitrella patens.
    Vidali L; Augustine RC; Kleinman KP; Bezanilla M
    Plant Cell; 2007 Nov; 19(11):3705-22. PubMed ID: 17981997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The DEAD-box RNA helicase eIF4A regulates plant development and interacts with the hnRNP LIF2L1 in Physcomitrella patens.
    Tyagi V; Parihar V; Malik G; Kalra V; Kapoor S; Kapoor M
    Mol Genet Genomics; 2020 Mar; 295(2):373-389. PubMed ID: 31781862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRUMPLED LEAF (CRL) homologs of Physcomitrella patens are involved in the complete separation of dividing plastids.
    Sugita C; Kato Y; Yoshioka Y; Tsurumi N; Iida Y; Machida Y; Sugita M
    Plant Cell Physiol; 2012 Jun; 53(6):1124-33. PubMed ID: 22514088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The KCH Kinesin Drives Nuclear Transport and Cytoskeletal Coalescence to Promote Tip Cell Growth in
    Yamada M; Goshima G
    Plant Cell; 2018 Jul; 30(7):1496-1510. PubMed ID: 29880712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.