These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 32470661)
1. Degradation of sulfonamide antibiotics using ozone-based advanced oxidation process: Experimental, modeling, transformation mechanism and DFT study. Pelalak R; Alizadeh R; Ghareshabani E; Heidari Z Sci Total Environ; 2020 Sep; 734():139446. PubMed ID: 32470661 [TBL] [Abstract][Full Text] [Related]
2. Individual and simultaneous degradation of sulfamethoxazole and trimethoprim by ozone, ozone/hydrogen peroxide and ozone/persulfate processes: A comparative study. Adil S; Maryam B; Kim EJ; Dulova N Environ Res; 2020 Oct; 189():109889. PubMed ID: 32979996 [TBL] [Abstract][Full Text] [Related]
3. Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O Bourgin M; Borowska E; Helbing J; Hollender J; Kaiser HP; Kienle C; McArdell CS; Simon E; von Gunten U Water Res; 2017 Oct; 122():234-245. PubMed ID: 28601791 [TBL] [Abstract][Full Text] [Related]
4. Degradation and mineralization of ofloxacin by ozonation and peroxone (O Chen H; Wang J Chemosphere; 2021 Apr; 269():128775. PubMed ID: 33162160 [TBL] [Abstract][Full Text] [Related]
5. Degradation of nitrobenzene wastewater in an acidic environment by Ti(IV)/H Yang P; Luo S; Liu Y; Jiao W Environ Sci Pollut Res Int; 2018 Sep; 25(25):25060-25070. PubMed ID: 29936612 [TBL] [Abstract][Full Text] [Related]
6. [Degradation of Prometon by O3/H2O2]. Li SF; Sun C Huan Jing Ke Xue; 2012 Apr; 33(4):1260-6. PubMed ID: 22720575 [TBL] [Abstract][Full Text] [Related]
7. Kinetic removal of haloacetonitrile precursors by photo-based advanced oxidation processes (UV/H Srithep S; Phattarapattamawong S Chemosphere; 2017 Jun; 176():25-31. PubMed ID: 28254711 [TBL] [Abstract][Full Text] [Related]
8. [Comparative study on O3/H2O2 and O3/Mn processes for removal of refractory organics in water]. Shi FH; Ma J Huan Jing Ke Xue; 2004 Jan; 25(1):72-7. PubMed ID: 15330425 [TBL] [Abstract][Full Text] [Related]
9. Response Methodology Optimization and Artificial Neural Network Modeling for the Removal of Sulfamethoxazole Using an Ozone-Electrocoagulation Hybrid Process. Nghia NT; Tuyen BTK; Quynh NT; Thuy NTT; Nguyen TN; Nguyen VD; Tran TKN Molecules; 2023 Jun; 28(13):. PubMed ID: 37446780 [TBL] [Abstract][Full Text] [Related]
10. Application of artificial intelligence for the optimization of advanced oxidation processes to improve the water quality polluted with pharmaceutical compounds. Serna-Carrizales JC; Zárate-Guzmán AI; Flores-Ramírez R; Díaz de León-Martínez L; Aguilar-Aguilar A; Warren-Vega WM; Bailón-García E; Ocampo-Pérez R Chemosphere; 2024 Mar; 351():141216. PubMed ID: 38224748 [TBL] [Abstract][Full Text] [Related]
11. Impact of O Stylianou SK; Katsoyiannis IA; Ernst M; Zouboulis AI Environ Sci Pollut Res Int; 2018 May; 25(13):12246-12255. PubMed ID: 28656574 [TBL] [Abstract][Full Text] [Related]
12. [Study on removal of nitrobenzene in water by O3/H2O2]. Ma J; Shi F Huan Jing Ke Xue; 2002 Sep; 23(5):67-71. PubMed ID: 12533929 [TBL] [Abstract][Full Text] [Related]
13. Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment. Xiang L; Xie Z; Guo H; Song J; Li D; Wang Y; Pan S; Lin S; Li Z; Han J; Qiao W Chemosphere; 2021 Nov; 283():131156. PubMed ID: 34153908 [TBL] [Abstract][Full Text] [Related]
14. Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O Wang H; Zhan J; Yao W; Wang B; Deng S; Huang J; Yu G; Wang Y Water Res; 2018 Mar; 130():127-138. PubMed ID: 29216480 [TBL] [Abstract][Full Text] [Related]
15. Influence of desorption process and pH adjustement on the efficiency of O Dal Conti-Lampert A; Mater L; Radetski-Silva R; Somensi CA; Poyer-Radetski L; Schmitz F; Dalpiaz FL; Radetski CM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(5):563-572. PubMed ID: 31924135 [TBL] [Abstract][Full Text] [Related]
16. The competition between cathodic oxygen and ozone reduction and its role in dictating the reaction mechanisms of an electro-peroxone process. Xia G; Wang Y; Wang B; Huang J; Deng S; Yu G Water Res; 2017 Jul; 118():26-38. PubMed ID: 28412550 [TBL] [Abstract][Full Text] [Related]
17. Combining ozone with UV and H Liu Z; Hosseinzadeh S; Wardenier N; Verheust Y; Chys M; Hulle SV Environ Technol; 2019 Dec; 40(28):3773-3782. PubMed ID: 29923788 [TBL] [Abstract][Full Text] [Related]
18. [O3/H2O2 oxidation processes of cyclops of zooplankton inactivation in water]. Cui FY; Wu YQ; Liu DM; Zhang M Huan Jing Ke Xue; 2005 Sep; 26(5):89-94. PubMed ID: 16366476 [TBL] [Abstract][Full Text] [Related]
19. Kinetic and mechanistic insights into the abatement of clofibric acid by integrated UV/ozone/peroxydisulfate process: A modeling and theoretical study. Qin W; Lin Z; Dong H; Yuan X; Qiang Z; Liu S; Xia D Water Res; 2020 Nov; 186():116336. PubMed ID: 32889366 [TBL] [Abstract][Full Text] [Related]
20. Ozone/peroxide advanced oxidation in combination with biofiltration for taste and odour control and organics removal. Beniwal D; Taylor-Edmonds L; Armour J; Andrews RC Chemosphere; 2018 Dec; 212():272-281. PubMed ID: 30145419 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]