BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 32470755)

  • 1. Using rice as a remediating plant to deplete bioavailable arsenic from paddy soils.
    He S; Wang X; Wu X; Yin Y; Ma LQ
    Environ Int; 2020 Aug; 141():105799. PubMed ID: 32470755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced arsenic depletion by rice plant from flooded paddy soil with soluble organic fertilizer application.
    He S; Wang X; Zheng C; Yan L; Li L; Huang R; Wang H
    Chemosphere; 2020 Aug; 252():126521. PubMed ID: 32203780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic removal from flooded paddy soil with spontaneous hygrophyte markedly attenuates rice grain arsenic.
    Wang X; Huang R; Li L; He S; Yan L; Wang H; Wu X; Yin Y; Xing B
    Environ Int; 2019 Dec; 133(Pt A):105159. PubMed ID: 31521815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrate reduced arsenic redox transformation and transfer in flooded paddy soil-rice system.
    Lin Z; Wang X; Wu X; Liu D; Yin Y; Zhang Y; Xiao S; Xing B
    Environ Pollut; 2018 Dec; 243(Pt B):1015-1025. PubMed ID: 30248601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The translocation of antimony in soil-rice system with comparisons to arsenic: Alleviation of their accumulation in rice by simultaneous use of Fe(II) and NO
    Wang X; Li F; Yuan C; Li B; Liu T; Liu C; Du Y; Liu C
    Sci Total Environ; 2019 Feb; 650(Pt 1):633-641. PubMed ID: 30212692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.
    Okkenhaug G; Zhu YG; He J; Li X; Luo L; Mulder J
    Environ Sci Technol; 2012 Mar; 46(6):3155-62. PubMed ID: 22309044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small-scale interaction of iron and phosphorus in flooded soils with rice growth.
    Wang Y; Yuan JH; Chen H; Zhao X; Wang D; Wang SQ; Ding SM
    Sci Total Environ; 2019 Jun; 669():911-919. PubMed ID: 30970458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative effects on arsenic uptake between iron (hydro)oxides on root surface and rhizosphere of rice in an alkaline paddy soil.
    Yang Y; Hu H; Fu Q; Xing Z; Chen X; Zhu J
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):6995-7004. PubMed ID: 31883069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of bioavailable As/Cd with rice plant from paddy soils of high contamination risk.
    Yan L; Wang X; Ji X; Peng B
    Environ Pollut; 2021 Nov; 289():117951. PubMed ID: 34426184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of labile arsenic from flooded paddy soils with a novel extractive column loaded with quartz-supported nanoscale zero-valent iron.
    Huang R; Wang X; Xing B
    Environ Pollut; 2019 Dec; 255(Pt 1):113249. PubMed ID: 31542664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.).
    Jung HI; Lee J; Chae MJ; Kong MS; Lee CH; Kang SS; Kim YH
    Environ Monit Assess; 2017 Nov; 189(12):638. PubMed ID: 29147882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial sulfate reduction decreases arsenic mobilization in flooded paddy soils with high potential for microbial Fe reduction.
    Xu X; Wang P; Zhang J; Chen C; Wang Z; Kopittke PM; Kretzschmar R; Zhao FJ
    Environ Pollut; 2019 Aug; 251():952-960. PubMed ID: 31234262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review.
    Kumarathilaka P; Seneweera S; Meharg A; Bundschuh J
    Water Res; 2018 Sep; 140():403-414. PubMed ID: 29775934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced As extraction from paddy soils with high As contamination risk by rice plant upon Si fertilization.
    Huang R; Wang X; Wei W; Xie Y; Liu S; Chen H; Zhang R; Ji X
    Chemosphere; 2023 Nov; 341():140074. PubMed ID: 37690551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic extraction from seriously contaminated paddy soils with ferrihydrite-loaded sand columns.
    Zhang R; Huang B; Zeng H; Wang X; Peng B; Yu H; Guo W
    Chemosphere; 2022 Nov; 307(Pt 1):135744. PubMed ID: 35853516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of ferrous sulfate amendment and water management on rice growth and metal(loid) accumulation in arsenic and lead co-contaminated soil.
    Zou L; Zhang S; Duan D; Liang X; Shi J; Xu J; Tang X
    Environ Sci Pollut Res Int; 2018 Mar; 25(9):8888-8902. PubMed ID: 29330821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Warming facilitates microbial reduction and release of arsenic in flooded paddy soil and arsenic accumulation in rice grains.
    Yuan H; Wan Q; Huang Y; Chen Z; He X; Gustave W; Manzoor M; Liu X; Tang X; Ma LQ; Xu J
    J Hazard Mater; 2021 Apr; 408():124913. PubMed ID: 33412441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.
    Yu HY; Ding X; Li F; Wang X; Zhang S; Yi J; Liu C; Xu X; Wang Q
    Environ Pollut; 2016 Aug; 215():258-265. PubMed ID: 27209244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arsenic mobility and bioavailability in paddy soil under iron compound amendments at different growth stages of rice.
    Yu HY; Wang X; Li F; Li B; Liu C; Wang Q; Lei J
    Environ Pollut; 2017 May; 224():136-147. PubMed ID: 28202263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid evaluation of arsenic contamination in paddy soils using field portable X-ray fluorescence spectrometry.
    Liang JH; Liu PP; Chen Z; Sun GX; Li H
    J Environ Sci (China); 2018 Feb; 64():345-351. PubMed ID: 29478657
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.