These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32471054)

  • 1. Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?
    González Fernández C; Gómez Pastora J; Basauri A; Fallanza M; Bringas E; Chalmers JJ; Ortiz I
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471054
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of Magnetic Catalysts: Advanced Design for Process Intensification.
    González-Fernández C; Gómez-Pastora J; Bringas E; Zborowski M; Chalmers JJ; Ortiz I
    Ind Eng Chem Res; 2021 Nov; 60(46):16780-16790. PubMed ID: 34866775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Assembled Permanent Micro-Magnets in a Polymer-Based Microfluidic Device for Magnetic Cell Sorting.
    Descamps L; Audry MC; Howard J; Mekkaoui S; Albin C; Barthelemy D; Payen L; Garcia J; Laurenceau E; Le Roy D; Deman AL
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification.
    Gómez-Pastora J; González-Fernández C; Real E; Iles A; Bringas E; Furlani EP; Ortiz I
    Lab Chip; 2018 May; 18(11):1593-1606. PubMed ID: 29748668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High gradient magnetic field microstructures for magnetophoretic cell separation.
    Abdel Fattah AR; Ghosh S; Puri IK
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Aug; 1027():194-9. PubMed ID: 27294532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of micro and sub-micro diamagnetic particles in dual ferrofluid streams based on negative magnetophoresis.
    Xue CD; Sun ZP; Li YJ; Chen JF; Liu B; Qin KR
    Electrophoresis; 2020 Jun; 41(10-11):909-916. PubMed ID: 32145034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a novel magnetophoresis-assisted hydrophoresis microdevice for rapid particle ordering.
    Yan S; Zhang J; Chen H; Yuan D; Alici G; Du H; Zhu Y; Li W
    Biomed Microdevices; 2016 Aug; 18(4):54. PubMed ID: 27289469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Microfluidic Device for Continuous-Flow Magnetically Controlled Capture and Isolation of Microparticles.
    Zhou Y; Wang Y; Lin Q
    J Microelectromech Syst; 2010 Aug; 19(4):743-751. PubMed ID: 24511214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.
    Rampini S; Kilinc D; Li P; Monteil C; Gandhi D; Lee GU
    Lab Chip; 2015 Aug; 15(16):3370-9. PubMed ID: 26160691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous sample washing and concentration using a "trapping-and-releasing" mechanism of magnetic beads on a microfluidic chip.
    Ramadan Q; Gijs MA
    Analyst; 2011 Mar; 136(6):1157-66. PubMed ID: 21270982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental investigation of magnetically actuated separation using tangential microfluidic channels and magnetic nanoparticles.
    Munir A; Zhu Z; Wang J; Zhou HS
    IET Nanobiotechnol; 2014 Jun; 8(2):102-10. PubMed ID: 25014081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip analysis of magnetically labeled cells with integrated cell sorting and counting techniques.
    Zhang H; Ding W; Li S; Ya S; Li F; Qiu B
    Talanta; 2020 Dec; 220():121351. PubMed ID: 32928389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput precise particle transport at single-particle resolution in a three-dimensional magnetic field for highly sensitive bio-detection.
    Abedini-Nassab R; Shourabi R
    Sci Rep; 2022 Apr; 12(1):6380. PubMed ID: 35430583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractionation of Magnetic Microspheres in a Microfluidic Spiral: Interplay between Magnetic and Hydrodynamic Forces.
    Dutz S; Hayden ME; Häfeli UO
    PLoS One; 2017; 12(1):e0169919. PubMed ID: 28107472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined microfluidic-micromagnetic separation of living cells in continuous flow.
    Xia N; Hunt TP; Mayers BT; Alsberg E; Whitesides GM; Westervelt RM; Ingber DE
    Biomed Microdevices; 2006 Dec; 8(4):299-308. PubMed ID: 17003962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells.
    Forbes TP; Forry SP
    Lab Chip; 2012 Apr; 12(8):1471-9. PubMed ID: 22395226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Capture and separation of biomolecules using magnetic beads in a simple microfluidic channel without an external flow device.
    Wang J; Morabito K; Erkers T; Tripathi A
    Analyst; 2013 Nov; 138(21):6573-81. PubMed ID: 24051541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction.
    Deraney RN; Schneider L; Tripathi A
    Analyst; 2020 Mar; 145(6):2412-2419. PubMed ID: 32057055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.