BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32471087)

  • 1. CO
    Mitrayana ; Apriyanto DK; Satriawan M
    Biosensors (Basel); 2020 May; 10(6):. PubMed ID: 32471087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser-based method and sample handling protocol for measuring breath acetone.
    Hancock G; Langley CE; Peverall R; Ritchie GA; Taylor D
    Anal Chem; 2014 Jun; 86(12):5838-43. PubMed ID: 24831456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A sub-ppbv-level Acetone and Ethanol Quantum Cascade Laser Based Photoacoustic Sensor - Characterization and Multi-Component Spectra Recording in Synthetic Breath.
    Pangerl J; Moser E; Müller M; Weigl S; Jobst S; Rück T; Bierl R; Matysik FM
    Photoacoustics; 2023 Apr; 30():100473. PubMed ID: 36970564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser diode photoacoustic detection in the infrared and near infrared spectral ranges.
    Horká V; Civis S; Xu LH; Lees RM
    Analyst; 2005 Aug; 130(8):1148-54. PubMed ID: 16021213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inexpensive UV-LED photoacoustic based real-time sensor-system detecting exhaled trace-acetone.
    Pangerl J; Sukul P; Rück T; Fuchs P; Weigl S; Miekisch W; Bierl R; Matysik FM
    Photoacoustics; 2024 Aug; 38():100604. PubMed ID: 38559568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of volatile organic compounds in exhaled breath as collected in evacuated electropolished canisters.
    Pleil JD; Lindstrom AB
    J Chromatogr B Biomed Appl; 1995 Mar; 665(2):271-9. PubMed ID: 7795807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-based sensor for detection of hazardous gases in the air using waveguide CO2 laser.
    Gondal MA; Bakhtiari IA; Dastageer AK
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Jun; 42(7):871-8. PubMed ID: 17558767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Portable Device for Measuring Breath Acetone Based on Sample Preconcentration and Cavity Enhanced Spectroscopy.
    Blaikie TP; Couper J; Hancock G; Hurst PL; Peverall R; Richmond G; Ritchie GA; Taylor D; Valentine K
    Anal Chem; 2016 Nov; 88(22):11016-11021. PubMed ID: 27753485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Selective Volatile Organic Compounds Breath Analysis Using a Broadly-Tunable Vertical-External-Cavity Surface-Emitting Laser.
    Tuzson B; Jágerská J; Looser H; Graf M; Felder F; Fill M; Tappy L; Emmenegger L
    Anal Chem; 2017 Jun; 89(12):6377-6383. PubMed ID: 28514136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 laser photoacoustic detection of ammonia emitted by ceramic industries.
    Sthel MS; Schramm DU; Lima GR; Carneiro L; Faria RT; Castro MP; Alexandre J; Toledo R; Silva MG; Vargas H
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):458-62. PubMed ID: 21146448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vacuum Ultraviolet Absorption Spectroscopy Analysis of Breath Acetone Using a Hollow Optical Fiber Gas Cell.
    Kudo Y; Kino S; Matsuura Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. External cavity diode laser based photoacoustic detection of CO2 at 1.43 microm: the effect of molecular relaxation.
    Veres A; Bozóki Z; Mohácsi A; Szakáll M; Szabó G
    Appl Spectrosc; 2003 Aug; 57(8):900-5. PubMed ID: 14661831
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near real-time VOCs analysis using an aspiration ion mobility spectrometer.
    Mochalski P; Rudnicka J; Agapiou A; Statheropoulos M; Amann A; Buszewski B
    J Breath Res; 2013 Jun; 7(2):026002. PubMed ID: 23470292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration.
    Ma W; Liu X; Pawliszyn J
    Anal Bioanal Chem; 2006 Aug; 385(8):1398-408. PubMed ID: 16847622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of UV-ionization based trace differential mobility sensor for acetone and hexane.
    Suresh M; Vasa NJ; Agarwal V; Chandapillai J
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3476-9. PubMed ID: 25570739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser.
    Wang Y; Feng Y; Adamu AI; Dasa MK; Antonio-Lopez JE; Amezcua-Correa R; Markos C
    Sci Rep; 2021 Feb; 11(1):3512. PubMed ID: 33568763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Near-Infrared Optical Feedback Cavity Enhanced Absorption Spectroscopy (OF-CEAS) to the Detection of Ammonia in Exhaled Human Breath.
    Luo Z; Tan Z; Long X
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low level detection of acetone vapor by improvised design of high "Q" tunable frequency Helmholtz photoacoustic cell using UV, mid- IR and THz sources.
    Kidavu AVS; Chaudhary AK
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123218. PubMed ID: 37556924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An acetone bio-sniffer (gas phase biosensor) enabling assessment of lipid metabolism from exhaled breath.
    Ye M; Chien PJ; Toma K; Arakawa T; Mitsubayashi K
    Biosens Bioelectron; 2015 Nov; 73():208-213. PubMed ID: 26079672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of Near Infrared Photoacoustic Spectroscopy for Analysis of Human Respiration: A Review.
    Dumitras DC; Petrus M; Bratu AM; Popa C
    Molecules; 2020 Apr; 25(7):. PubMed ID: 32283766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.