BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32471140)

  • 1. Calligraphed Selective Plasmonic Arrays on Paper Platforms for Complementary Dual Optical "ON/OFF Switch" Sensing.
    Susu L; Campu A; Astilean S; Focsan M
    Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32471140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Portable Plasmonic Paper-Based Biosensor for Simple and Rapid Indirect Detection of CEACAM5 Biomarker via Metal-Enhanced Fluorescence.
    Susu L; Vulpoi A; Astilean S; Focsan M
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Efficient Low-Cost Paper-Based Sensing Plasmonic Nanoplatforms.
    Susu L; Campu A; Craciun AM; Vulpoi A; Astilean S; Focsan M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30208609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal Biosensing on Paper-Based Platform Fabricated by Plasmonic Calligraphy Using Gold Nanobypiramids Ink.
    Campu A; Susu L; Orzan F; Maniu D; Craciun AM; Vulpoi A; Roiban L; Focsan M; Astilean S
    Front Chem; 2019; 7():55. PubMed ID: 30800650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates.
    Polavarapu L; Porta AL; Novikov SM; Coronado-Puchau M; Liz-Marzán LM
    Small; 2014 Aug; 10(15):3065-71. PubMed ID: 24789330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Innovative, Flexible, and Miniaturized Microfluidic Paper-Based Plasmonic Chip for Efficient Near-Infrared Metal Enhanced Fluorescence Biosensing and Imaging.
    Campu A; Muresan I; Craciun AM; Vulpoi A; Cainap S; Astilean S; Focsan M
    ACS Appl Mater Interfaces; 2023 Dec; 15(48):55925-55937. PubMed ID: 37983540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioplasmonic calligraphy for multiplexed label-free biodetection.
    Tian L; Tadepalli S; Park SH; Liu KK; Morrissey JJ; Kharasch ED; Naik RR; Singamaneni S
    Biosens Bioelectron; 2014 Sep; 59():208-15. PubMed ID: 24727607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films.
    Tang L; Liu Y; Liu G; Chen Q; Li Y; Shi L; Liu Z; Liu X
    Nanoscale Res Lett; 2019 Mar; 14(1):94. PubMed ID: 30868395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-Dimensional Surface-Enhanced Raman Scattering Platforms: Large-Scale Plasmonic Hotspots for New Applications in Sensing, Microreaction, and Data Storage.
    Phan-Quang GC; Han X; Koh CSL; Sim HYF; Lay CL; Leong SX; Lee YH; Pazos-Perez N; Alvarez-Puebla RA; Ling XY
    Acc Chem Res; 2019 Jul; 52(7):1844-1854. PubMed ID: 31180637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmonic Paper Microneedle Patch for On-Patch Detection of Molecules in Dermal Interstitial Fluid.
    Kolluru C; Gupta R; Jiang Q; Williams M; Gholami Derami H; Cao S; Noel RK; Singamaneni S; Prausnitz MR
    ACS Sens; 2019 Jun; 4(6):1569-1576. PubMed ID: 31070358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optofluidic microsystem with quasi-3 dimensional gold plasmonic nanostructure arrays for online sensitive and reproducible SERS detection.
    Deng Y; Idso MN; Galvan DD; Yu Q
    Anal Chim Acta; 2015 Mar; 863():41-8. PubMed ID: 25732311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.
    Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G
    Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfluidic platform for integrated plasmonic detection in laminal flow.
    Campu A; Lerouge F; Craciun AM; Murariu T; Turcu I; Astilean S; Monica F
    Nanotechnology; 2020 Aug; 31(33):335502. PubMed ID: 32348974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold nanoworms: Optical properties and simultaneous SERS and fluorescence enhancement.
    Khan HI; Khan GA; Mehmood S; Khan AD; Ahmed W
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117111. PubMed ID: 31141771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y; Yang P; Habeeb Muhammed MA; Alsaiari SK; Moosa B; Almalik A; Kumar A; Ringe E; Khashab NM
    ACS Appl Mater Interfaces; 2017 Nov; 9(43):37597-37605. PubMed ID: 28990755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid Fabrication of a Flexible and Transparent Ag Nanocubes@PDMS Film as a SERS Substrate with High Performance.
    Li L; Chin WS
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37538-37548. PubMed ID: 32701289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection.
    Duan B; Zhou J; Fang Z; Wang C; Wang X; Hemond HF; Chan-Park MB; Duan H
    Nanoscale; 2015 Aug; 7(29):12606-13. PubMed ID: 26147399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Microneedle Arrays for in Situ Sensing with Surface-Enhanced Raman Spectroscopy (SERS).
    Park JE; Yonet-Tanyeri N; Vander Ende E; Henry AI; Perez White BE; Mrksich M; Van Duyne RP
    Nano Lett; 2019 Oct; 19(10):6862-6868. PubMed ID: 31545611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Three-Dimensional Plasmonic Arrays for Large Near-Infrared Fluorescence Enhancement.
    Pang JS; Theodorou IG; Centeno A; Petrov PK; Alford NM; Ryan MP; Xie F
    ACS Appl Mater Interfaces; 2019 Jul; 11(26):23083-23092. PubMed ID: 31252484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.